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ABSTRACT

This report is concerned with the discription of the development

and application of a stochastic crack growth model. It is built as a

discontinuous Markov process and is inhomogeneous with respect to

the number of cycles required for the crack to reach a specified crack

length. The model is then used to describe the evolution of the crack

length in terms of growth curves, each of whose points possess equal

probability of advancing from one position to another forward

position. The validity of the model is established by applying it to

constant as well as to variable amplitude loading. In those

applications the theoretical constant probability crack growth curves

generated by the model were compared to those experimentally

obtained using Al 7075-T6 and Al 2024-T3 materials for constant-

amplitude loading while Ti-6AI-4V was used in single overload

application. Results of these comparisons indicate the ability of the

proposed model, when fitted with parameters whose values can be

obtained from a limited numbers of experimental tests, to predict the

crack growth statistics under different loading conditions.
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CHAPTER I

INTRODUCTION

Prediction of the fatigue crack growth process is generally made by

using one of the determiristic crack growth laws which views the

process as continuous in time and state. Under these laws the growth

rate is calculated from the experimental knowledge of the applied

stress, current crack length and other influencing parameters. As

pointed out by Lauschmann[1], three applications of the mean-value

operator on the crack growth are implicitly irivalued in standard

concepts of the growth law: averaging along the crack front,

averaging ii) the direction of crack propagation close to the given

crack length and averaging over individual realization of the process.

This averaging technique provides the advantage of simplicity and

the ability to respond to changes in the process's physical conditions.

It suffers, however, from the inability to express the process's

inherent random properties, a factor critical to engineering design

and reliability management. The use of statistical distributions or

probabilistic models thus becomes a necessary tool 'or a more

reliable prediction of crack growth. In this approach one can

distinguish three different groups of probabilitic models. The first

group, see for example references[2-7], depends on the introduction

of random variables to replace the constants in the appropriate

deterministic law. The second group, examples of which are shown in

references[8-10], introduces a joint probability distribution whose



variables are crack length and number of loading cycles. The last

group of probabilistic models assigns a non-decreasing evolutionary

feature to the growth process by using the concepts of the stochastic

theory, in particular, the Markov process. Detailed analysis of these

different types of models is given in reference[l 1]. The work in this

research program falls within the definition of the last group, i.e. the

stochastic Markov model. The first generation of these models,

represented in the work of Bogdanoff et al[12-15], Ghonem et

al[16,17] and Sedlacek[18], while having the ability to describe the

random crack growth process in defined cases, has difficulty in

estimating its predictive ability to cases where no experimental data

is available. In recent years a different generation of stochastic

models has evolved. In these models, variability in the process is

taken into account by means of generalizing the growth law, using

the stochastic theory, into a probability form. The work of Ghonem

and Dore[19] and others[20-23] are examples of this approach. The

purpose of this report is to describe the theoretical and experimental

work that has been carried out in developing the model of Ghonem

and Dore[191 termed the constant probability crack growth model.

This description will be covered in the following three chapters. The

mathematical elements of the model are introduced in chapter II,

which will also deal with the correlation between the elements and

the micro-physical condition of the growth process. The experimental

set-up and procedure used for verifying the model in the case of

constant-amplitude loading will be discussed in this chapter. Chapter

Il! deals with an extension of the model base to include the case of

random loading by utilizing a simple single overload spectrum. In

2



this chapter retardation experiments and their relation to the

estimation of the crack growth law in the delayed zone will be

described. The last chapter summarizes the findings of this research

program and suggests avenues for further model refinement and

application. Mathematical derivations and experimental procedures

which have been published in literature during the course of this

research program will not be repeated in the main text of the report.

Reference will be made to these publications, some of which will be

included as appendices.

3



CHAPTER II

COSTANTANT PROBABILITY CRACK GROWTH MODEL

2.1 Mathematical Elements

Formulations of this model and its theoretical development have

been detailed in references [11, 19], see appendix A and C. In brief

summary, the model is based on the view that the crack front is

identified as having a large number of arbitrarily chosen points.

While each of these points can propagate under repeated cyclic

loading in three dimensional geometry. The model considers only the

mode I crack propagation along a plane perpendicular to that of the

externally applied load. The fracture surface is divided into equally

spaced states each of which has a width equal to the expected

experimental error Ax. Adhering to the mechanistic properties of a

propagation crack and considering the growth process to be

evolutionary discrete state and time-inhomogeneous, the model

yields a crack survival probability which is written as:

In P,(i) = - f , di + L (1)

where P,(i) is the probability of the crack tip being in the state r

when Ai cycles elapsed, X, is the transition intensity parameter at

state r and L is an integration constant.

4



The solution of equation (1) depends on the mathematical

definition of X,. Earlier work of Ghonem and Provanj16, 171

considered Xr linearly dependent on r in the form

Xr = rX (2)

where X is a material constant. This yields a growth process well

described as a Markovian linear birth process. Difficulties in this

approach have been analyzed in the reference[l 1].

In the present program, Xr was established as a crack length, cycle

and stress dependent parameter in the form

Xr = L(r) ek. (3)

where L and k are state position dependents (see Appendix A). This

equation in conjuction with equation (1) yields a probabilistic crack

growth equation in the form

In P,(i)= B( eK 0.
- eK, ) i > I

(4)

In Pr(i) = 0 1< I

the parameter B, K and I depend on state r through the

experimental functional forms

5



ni
B = cl r

K =C2  r n2(5 )
0 = c3 ((r-lI

where c. and n. are constants depending on load conditions,J J

enviroment, etc. Equations (4) and (5) are the basic results. They are

used to construct constant probability crack growth curves. The

constants in equation (5) can be calculated by considering the crack

growth curve obtained by using a continuous equation as the

P,(i)=0.5 curve. This can be done numerically and the constant

probability crack growth curves can be established under any

loading conditions without the need to perform a large number of

fatigue tests. The results of this approach, when applied to data

proceeded by Virckler et al[24] on Al 2024-T3, were in agreement

with the experimental curves with an average error in the

theoretical curves estimated at 5% (see reference[19] and Appendix

A for detailes of this application).

2.2 Experimental Verification

In order for the model to have a wider scope of application, a

verification of the model was carried out for different loading

conditions on the same material. An in-house experimental program

was followed, during 1985 and 1986. on Al 7075-T6. In this

program, tests were conducted at three different stress levels

(R=4,5,6), and at each stress level sixty replications were employed,

crack length versus number of cycles was measured using a

6



photographic technique. The crack length measurements obtained

were from 9mm to 23mm on center crack retangular specimens with

dimensions of 320mm x 101mm and the thickness of 3.175mm.

Diagrams of sample functions were obtained and converged into

constant probability crack growth curves for each test condition.

Equations (4) and (5) were then employed to obtain the theoretical

constant probability crack growth curves for each corresponding test

loading condition. Comparision with experimental data yielded very

good correlation. The experimental program, procedure,

measurement technique and analysis are described in detail in

reference[l 1, 251 and Appendix B.

7



CHAPTER III

VARIABLE-AMPLITUDE LOAD APPLICATION

3.1 Introduction

A practical load spectrum contains overloads or underloads which

bring about crack retardation or acceleration respectively. Single

tensile overload represents the most basic and simplest situation

involving retardation, see Fig. 1. Various researchers have attempted

to develop predictive crack growth models involving random loading

by correlating the transient effects of retardation with a wide range

of variables associated with loading, metallurgical properties,

environment, etc. The models are generally built around one of

serveral suggested retardation mechanisms. While no one mechanism

can offer interpretations of all retardation characteristics. It is

possible to identifiy the principal mechanisms as:

1. Compressive residual stress created in the overload plastic zone

due to the clamping action of the elastic material surrounding this

zone[25-29].

2. Crack tip blunting, especially in materials with work hardening

properties, which leads to a decrease of the actual AK at the crack tip

[30].

3. Crack closure due to crack surface contact above minimum load

as a result of the residual tensile strain in the material element in

the wake of the crack tip. This mechanism is predominant under a

plane strain condition[31, 321.

8



Kol -

Kmax --- -

Kmin .... .

Cycle number N

no effect retardation

yC
Ci

delayed retardation lost retardation

Fig. 1 Different cases of transient crack growth behavior

following a tensile peak ovdrload
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4. Crack plane orientation; the plane of a mode I fatigue crack has

a specific orientation in relation to the applied stress. Under overload

condition there can be a change of crack plane orientation producing

transient effects[33].

5. Metallurgical factors, such as yield strength[34], type of

precipitates[35] and strain hardening / softening characteristics[(36J.

As pointed out by Arone[37], almost all these mechnism can be

expressed in term of the effective stress intensity factor concept

which permits the calculation of the crack growth rate after overload

in the same form as for the constant-amplitude loading except that

the stress intensity factor is replaced by its effective value. The

value is generally expressed in terms of load parameters,

environmental conditions, material properties and specimen (or

component) geometry. The defficiency in this approach is that, again,

it does not take into account the inherent randomness of the

retardation phenomenon[39] which is manifested in the high degree

of scatter observed in retardation experiments[38]. The work

presented in this chapter is an attempt to extend the concept of the

constant-probability crack growth model to include the transient

retardation effects. This is achieved by introducing an effective

stress intensity parameter, AKef, into the definition of the transition

intensity of the stochastic crack growth process. By considering the

load interaction effects in an appropriate expression of AK~ff, the

model generates a unified probability growth law that can be used to

10



predict scatter in complex random load history.

3.2 Proposed Model

3.2.1 Mathematical Elements

The constant-probability crack growth equation (1) depends on the

determination of the transition intensity parameter Xr. In Appendix C

it has been shown that

X. = L Ai- (6)

where L depends on the material, the crack position (r) and stress

conditions (Aa and R).

One can thus be more specific in the above definition by rewriting

it as :

Xr= C, f l (Aoy, R) f2(a) Ai, (7)

both f, and f2 can be expressed as a joint function expressing the

effective crack tip stress intensity factor at position r. i.e.

X- = C1 f3(AKeff, R) Ai- (8)

where C1 and c are material constants.

11



This transition intensity is, in fact, similar to that proposed by

Ditlersen and Sobczyk[39]. By substituting (8) in (1) and setting a

boundary condition that Pr(i)=l when Ai = 0, one obtains

Ai = f(AKeff R) (- In P,(i))O (9)

l+a I
where f(AKeff,R)=( -c1 )f3(AKeff,R)] "O and P=

The equation above defines the number of cycles required for the

crack tip, under the driving force of f(AKeff, R) to advance from state

r to state r+l (i.e. from crack length a to a+Aa) with a survival

probability Pr(i). When Pr(i) is kept constant, while incremental

values of Ax, i.e. crack length increments, are substituted in an

appropriate form of f(AKeff, R) a crack growth curve whose points

posses the same propagation probability, can be generated.

The critical element in equation (9) is the determination of an

approriate f(AKeff, R) which includes the effects of overload. This is

the subject of the following section.

3.2 f(AKeff, R) During Retardation

From the introduction of this chapter and the extensive review on

the subject of overload[41], the principal would-be mechanism

responsible for crack retardation is the closure stress resulting from

the induced plasticity in the wake of the crack and the constraining

compressive residual stress in the overload plastic zone in front of

the crack tip. If one recognizes that these two effects act

simultaneously, effects to define the corresponding effective stress-

12



intensity factor would be more difficult than operating in a region

where only one effect plays the major role. Closure stress is defined

as the stress required to fully open the crack. If an externally

applied load is set above the closure stress level, one can assume that

f(AKeff, R) can be calculated by accounting only for the crack tip

compressive residual stress. This condition was achieved by carrying

out closure experiments on compact tension specimen made of rolled

and annealed Ti-6AI-4V material sheets. Specimen geometry is

shown in Appendix D while material composition is listed in table 1.

C Fe N Al V H 0

0.026 0.09 0.011 5.8 5.8 0.008 0.14

Table 1 Chemical Composition of Ti-6AI-4V Material in WT%

The notch-mounted COD gauge technique was used to measure the

crack opening displacement. The experiments were carried out under

constant AP defined by maximum and minimum load, Pmax and Prnin

respectively, with the frequency of 15 Hz. A single overload P01 was

applied at crack length of 18mm, 25mm and 29mm with frequency

of about 0.5 Hz. The interval crack length is large enough to avoid the

overload interaction. This was carried out for different Pmin, Pmax and

13



I"':. In all these test, while a permanent increase in COD measurnents

,was registered following the overload application, no closure could be

detected. This was attributed to the possible insensitivity of COD

gauge resulting from the long distance between the crack tip and the

position of the gauge at the mouth of the crack, which in all tests was

more than 20 mn. A new set of experiments was then executed. In

these a series of pairs of hardness indentations were made along two

lines parallel to and equal distance from the expected nominal crack

path(Fig. 2). Each pair measures 3mm apart. A strain extensometer.

with an accuracv of 5x]0 -5 was used with the tips of its head resting

in the pair of indentations whose connecting line was perpendicular

FiU. 2 .\ series of pairs of hardness indentations

made along two lines partallel to alnd equal

distance from the expected nominal cirack

p a t h

I i



to the crack plane. The position of the extensometer followed behind

the advancing crack tip. Closure measurements were made in the

same pattern discribed above, but only at the distance of 3mm

behind the crack tip. A schematic of this surface measurement

procedure and an illustrative photograph are shown in Figure 3 and

Figure 4 respectively. Output from this experiment, in the form of

load versus displacement curves for different crack lengths a and

different Pra/Pmax' is shown in Figures 5(a) and (b); the indication

being that, for this material, the onset of the closure depends on Pmin.

No closure was observed for Pmin > I KN. Thus it was assumed that for

these Ti-6AI-4V specimens and load conditions with Prnin > I KN, the

governing retardation mechanism is the crack tip constraining

compressive residual stress.

A number of models accounting for the effect of residual stress due

to overloading have been suggested. The modified Willenberg et

a1136] appeared to be the one most frequently referenced. According

to this model, the stress intensity for crack growth is modified by a

residual stress intensity factoi KR that decays linearly with crack

extension. This KR is written as:

r 1 Kth/Kmax] A

K = s Ii Kn " Kol

K h is the maximum stress intensity factor associated with t' igue

crack growth threshold at R=0- Aa,, is crack growth fol lowing the

o'erload and S i's defined as a shut off ratio corresponding to thai

15



indentations

A strain extensometer
resolution 5x1 0A(-5)

Y- specimen

Fig. 3 Schematic sketch of closure measurement

(the position of the gauge leads A are maintained at 3m

behind the crack tip B at the moment of applying overload)

Fig. 4 Photograph of the schematic sketch shown in Fig. 3

I=~~ 0, -
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ol
value of the ratio Kmax/Kmax, where crack arrest is expected to result;

Z., is the overload affected zone and equal to

Z01 = 2ln a( / ay )2 (I11)

where y is an experinental constant; For Ti-6AI-4V material y and S

are expected to be 4 and 2.8, respectively [43,441 while cy is 924

N/Mm 2 . Additional work by Wei et al[42] suggests that further

modifications be made to the above equations. These modifications

preserve the basic concept that a residual stress intensity factor KR is

produced by the overload. The rate of decay is, however, assumed to
*

be proportional to (I - Aao1/Zo1 )2 over the range of Aaoi from Zo0 to Zoi.

This is expressed as:

0 AaO)KR ( - 0o)2 < ao < Zo1  (12)

Zl indicates the delayed zone and is assumed to be equal to the

appropriate cyclic plastic zone size. Z01 is the overload effected zone.

KR° is the residual stress indensity factor immediately following the

overload, i.e. at Aaoi = 0; it is given as:

1_ 1-Kth/Kmax oi
- 1 (Kax - Kmax) (13)

19



In a deterministic sense, equation (12) could be used in conjuction

'vith a Paris type crack growth law to calculate the crack growth rate

in the overload affective zone. One of these laws, which exibits a

strong dependency on R, is what developed by Walker[461 in the

form:

da
dN C Kax AK"

which could be further expressed as

da C K maxm  (I-R)" (14)

dN

where C and m are material constants.

The above equation is, in fact, identical to the equation derived by

Fitzgerald[47] on the basis of empirical data fitting. In his form

however, the value of AK is reduced by AK0 which is defined as a

parameter indicating an apparent threshold value.

Now, by assuming that the compressive residual stress at the crack

tip due to the overloading is the main mechanism, equation (14)

could then be modified as

da
= C K " (1-a) ( 15)
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where K. R Kmin-KRwK=K -KR,,, =and substituting these into eq.(15)

we will get

dadN= C (K,,-KR)m AK" (16)

There is no available information in the literature indicating the

validity of the above equation for overload conditions which do not

promote closure by crack tip plasticity. Therefore experimental tests

were carried out on specimens of Ti-6AI-4V, having the compact

tension geometry previously described, to test equations (12) and

(16) in the overload affected region. These tests included varying

parameters of stress ratio, overload and AK as shown in table 2. In

each test crack length and the associated growth rate were measured

during base loading as well as during the delayed zone after the

overload application. ND was also measured and listed in table 2.

Some experimental results of this work, in the form of da/dN versus

crack length during retardation, are shown in Figures 6(a)-6(d).

Results using [12] and [16] for the same loading conditions are also

presented in these figures. It was observed, however that by

modifying Wei and Shih's form, i.e., equation [121, to

Kol
Kmax

KR - 1-Kth/KmxS_l - Kmax) Kmax (17)
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(PoI-Pmax)/Pmax 50% 70% 109%

(%)

Overload(KN) 16.5 18.7 23.0

AK NK Nd AK Nd

(N-mm)N (N-mm)

Pmin=2.2KN 685.2 532 581.5 1763 678.7 12,267

Pmax=11KN 875.0 376 873.6 1502 871.1 10,940

R=0.20 1037.0 135 1007.0 8,549

Pmin=5KN 465.1 1,218 464,3 2,810 463.5 88,208

Pmax=11KN 596.1 898 594.8 2,481 593.5 48,615

R=0.46 748.5 563 686.0 2,264 686.5 38,267

Pmin=6.6KN 339.4 4,080 340.2 45,120 343.1

Pmax=11KN 440.6 1,094 439.7 17,788 435.2 18,388

R=0.6 559.1 936 501.8 16,217 500.4 13,332

Table 2 Effect of Varying R, overload ratio and AK on
CracK Growth Delay (Nd) in Ti-6AI-4V

22



A closer fitting, as shown also in the above mentioned figures can be

achieved. This empirical modification emphasizes the influence of the

overload ratio. Several other observations obtained from this

experimental program will be discussed in the following chapter. The

major conclusion drawn from this work, however, is that the

effective stress intensity factor for the overload affected zone could

be determined. Once this has been achieved, the next step is to

generate experimentally the scatter crack growth curves. From these,

constant probability crack growth curves could be established and

compared with those theoretically obtained using the proposed

model. This will be detailed in the following section.

0.00010

0.00008 . " "
.. . ..

2 0.00006 : *

"-. U . Experiment

0.00004 a By Authors
p * BV Wei and Shih
S'Load Condition:

0.00002 -. Pmin=4KN
Pmax=9KN
PoI=18KN

0 .0 0 00 0 , , ,
17 18 19 20

Crack Length (mm)

Fig. 6-(a) KR model test
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. Experment

0 "a By Authers
0.0001• By Wei and Shi
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.4 Pmin=SKN

' ;, '-=Pmax=-11KN
U PoI=23KN

0.0000 1 1 4 , , * ,

17 18 19 20 21 22

Crack Length (mm)

Fig. 6-(b) KR model test
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0.0003 U.....

2 .** *.- U ' Experiment
0.0002 **" 3 U By Authors

*. + By Wei and Shih
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0.0001 Pmn=22KN, Prnax=lIlIKN

PoI=23KN

0.0000 r -I- m m

17 18 19 20 21 22
Crack Length (mm)

Fig. 6-(c) KR model test
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PoI=16.5KN
8.00e-5 1 •

24 25 26 27 28 29
Crack Length (mm)

Fig. 6-(d) KR model test

3.3 Single Overload Application

3.3.1 Experimental Crack Growth Curves

Crack growth scatter curves, including durations of delayed zones,

were generated by using sixty-five identical compact-tension

specimens of Ti-6AI-4V material which are used throughout this

program. Each specimen supplied one sample crack growth curve

containing three overload regions at crack lengthes of 18, 25 and 29

mm. These intervals were seleted so that no one overload region

could interact with any other overload region on the same curve.

Basic load conditions were Pmin = 4 KN and Pmax= 9 KN; overload P.,

was 18 KN. Load frequency was 15 Hz and the base loading as well as

25



the overloads was applied by using an automatic function generator

system linked to the servohydraulic material testing machine which

was run by the same operator in a temperature-controlled room

during the entire test program. Data was collected in the form of

number of cycles and corresponding crack length at intervals of

1,500 cycles with each data point representing an average of three

measurements taken with a frequency of 500,000 points per second.

Crack length was measured using a current reversing potential drop

system developed by the authors and decribed in Appendix D.

Typical results of crack length a vs number of cycles N are shown in

Figure 7. Each of these sixty-five sample curves, which are shown in

Figure 8, corresponding to initial and final crack lengths of 16 and

32mm, respectively, was divided into 160 segments; each

representing a crack state position with a width of 0.1 mm. Number

of cycles in each state was calculated as irj where lr<160 and

1<j565. This data was then utilized in a manner identical to that

described in references[l1, 27] to generate experimental constant

probability crack growth curves which include retardation zones.

The curves are shown in Figures 9(a) and 9(b).
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3.3.2 Theoretical Crack Growth Curves

The next step was to produce the corresponding theoretical curves

using the proposed model. This was achieved in the following

combined form by employing equations (7), (9) and (16) and

considering the threshold level

Ai = C (Kmax-KR) m (AK-AK 0)- n (-lnP)O (18)

By maintaining the value of P constant and calculating Kmax, KR and

AK for a crack length a; a=1 Ax, one obtains the number of cycles AN

corresponding to increament Aa at a crack length a. This yields an

individual constant probability crack growth curve. The length Zo, of

the overload affected zone was determined by using equation (11).

The full solution of equation (18) requires the knowledge of the

parameters c, m, n and 3. As the objective of this part of the study

was to predict the overload delayed zone, use was made of the

portions of the experimental constant-probability curves

corresponding to the constant amplitude load cycles to estimate the

constants using minimum least square curve fitting method. If the

unit of stress intensity factor is N. mm- 1.5 and Ax=O.1mm the results

are

C = 9.881x10'°

m = 0.93

n = 2.03

and 13 = 0.46
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Those constants were used in equation (18) to generate the

theoreticai constailL probability crack growth curves for the delayed

regions. Eight of those are shown in Figure 10(a)-Figure 10(h) and

compared with constant probability curves from the experiment

(Figure 9(b)). Furthermore, delayed cycles obtained both

experimentally and theoretically are presented in table 3, in which

the degree of error between the two sets of results was listed. The

average error in data predicted by the proposed model is 8%.

Discussion of the results and observations concerning the

retardation process are the subject of the following chapter.
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P=0. 1

CL AN(THEORY) AN (EXPERIMENT) %
(MM) (CYCLES) (CYCLES) ERROR

16.9 3093 2625 17.83
17.0 3055 3425 -10.80
17.1 3019 3645 -17.69
17.2 2983 3322 -10.20
17.3 2947 2896 1.76
17.4 2913 3070 -5.11
17.5 2878 2897 -0.66
17.6 2844 3211 -11.43
17.7 2810 3314 -15.21
17.8 2778 2897 -4.11
17.9 2745 2647 3.70

atio 18.0 2713 3096 -12.37
zn 19.6 103154 105209 -1.95

19.7 2524 2256 11.88
19.8 2470 2172 12.06
19.9 2445 2170 12.67
20.0 2241 1922 16.59
20.1 2131 1862 14.45
20.2 2108 1870 12.73
20.3 2084 1866 11.68
20.4 2061 1871 10.15
20.5 2038 1869 9.04
20.6 2015 1874 7.52
20.7 1993 1828 9.03
20.8 1971 1826 7.94
20.9 1949 1865 4.50
21.0 1927 1823 5.70
21.1 1906 1730 10.17
21.2 1885 1731 8.90
21.3 1865 1728 7.93
21.4 1843 1850 -0.38
21.5 1824 1847 -1.25
21.6 1803 1727 4.40
21.7 1784 1721 3.66
21.8 1764 1722 2.44
21.9 1745 1719 1.51

Table 3 Percentage error between the theoretical
and experimental constant-probability
crack growth curves
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CL AN(THEORY) AN(EXPERIMENT) %
(MM) (CYCLES) (CYCLES) ERROR

22.0 1725 1714 0.64
22.1 1707 1726 -1.10
22.2 1688 1710 -1.29
22.3 1670 1717 -2.74
22.4 1652 1733 -4.67
22.5 1633 1712 -4.61
22.6 1616 1719 -5.99
22.7 1599 1621 -8.77
22.8 1581 1619 -2.35
22.9 1563 1517 -3.03
23.0 1547 1510 2.45
23.1 1530 1532 -0.13
23.2 1514 1533 -1.24
23.3 1497 1517 -0.06
23.4 1481 1434 3.28
23.5 1465 1422 3.02
23.6 1449 1418 2.19
23.7 1434 1425 0.63
23.8 1418 1316 7.75
23.9 1403 1319 6.37
24.0 1387 1416 -2.05
24.1 1373 1396 -1.65
24.2 1358 1404 -3.28
24.3 1343 1304 2.99
24.4 1329 1294 2.70
24.5 1315 1286 2.26
24.6 1300 1300 0.00
24.7 1287 1283 0.03
24.8 1272 1194 6.53
24.9 1259 1305 -3.52

rtdio 25.0 1246 1418 -12.13
zoe 26. 9 79515 90133 -11.78

27.0 1134 1048 8.21
27.1 1035 979 5.72
27.2 981 952 3.05
27.3 971 956 1.57
27.4 961 956 0.52
27.5 950 974 -2.46
27.6 940 963 -2.39

Table 3 (continued)
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CL AN(THEORY) AN(EXPERIMENT) %
(MM) (CYCLES) (CYCLES) ERROR

27.7 930 960 -3.13
27.8 920 950 -3.16
27.9 910 975 -6.67
28.0 900 970 -7.22
28.1 890 971 -8.34
28.2 881 967 -8.89
28.3 871 967 -9.93
28.4 861 889 -3.14
28.5 852 944 -9.74
28.6 843 976 -13.63
28.7 834 921 -9.45
28.8 824 938 -12.15
28.9 816 935 -12.72

rio_ 29.0 807 896 -9.93
Wfe 31.1 70242 77076 -8.87

31.2 658 731 -9.13
31.3 624 732 -14.75
31.4 618 724 -14.64
31.5 610 725 -15.86
31.6 604 722 -16.34
31.7 597 702 -14.96
31.8 590 70C -15.71
31.9 583 697 -16.35
32.0 576 696 -17.24
32.1 571 698 -18.19
32.2 563 680 -17.20
32.3 557 662 -15.86
32.4 551 660 -16.50
32.5 545 657 -11.70
32.6 538 657 -18.11
32.7 532 623 -14.61
32.8 526 610 -13.77
32.9 520 601 -13.48
33.0 513 598 -14.21

Table 3 (continued)
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P=0.2

CL AN (THEORY) AN(EXPERIMENT) %
(MM) (CYCLES) (CYCLES) ERROR

16.9 2623 2203 19.06
17.0 2591 2324 11.49
17.1 2561 2682 -4.51
17.2 2529 2432 3.99
17.3 2500 2331 7.25
17.4 2470 2623 -5.83
17.5 2441 2542 -3.97
17.6 2412 2428 -0.06
17.7 2384 2364 0.85
17.8 2356 2322 1.46
17.9 2328 2320 0.03

reiardatio 18. 0 2301 2329 -1 .20
zone 19.6 90204 100892 -10.59

19.7 2480 2229 11.26
19.8 2265 2231 1.52
19.9 2073 2026 2.32
20.0 1901 2014 -5.61
20.1 1808 1927 -6.17
20.2 1787 1917 -6.78
20.3 1768 1822 -2.96
20.4 1748 1823 -4.11
20.5 1728 1827 -5.42
20.6 1709 1856 -7.92
20.7 1690 1813 -6.78
20.8 1672 1817 -7.98
20.9 1653 1768 -6.50
21.0 1634 1610 1.49
21.1 1617 1603 0.87
21.2 1598 1612 -0.87
21.3 1582 1611 -1.80
21.4 1563 1613 -3.10
21.5 1547 1598 -3.19
21.6 1529 1416 7.98
21.7 1513 1411 7.23
21.8 1496 1308 14.37
21.9 1480 1404 5.41
22.0 1463 1311 10.39
22.1 1448 1387 4.40
22.2 1432 1314 8.98

Table 3 (Continued)
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CL AN(THEORY) AN(EXPERIMENT) %
(MM) (CYCLES) (CYCLES) ERROR

22.3 1416 1402 1.00
22.4 1401 1326 5.66
22.5 1385 1394 -0.65
22.6 1371 1406 -2.49
22.7 1355 1400 -3.21
22.8 1341 1403 -4.42
22.9 1326 1404 -5.55
23.0 1312 1380 -4.93
23.1 1298 1315 -1.29
23.2 1283 1410 -9.01
23.3 1270 1356 -6.63
23.4 1256 1316 -4.56
23.5 1243 1298 -4.24
23.6 1229 1309 -6.11
23.7 1216 1305 -6.82
23.8 1202 1296 -7.25
23.9 1190 1290 -8.18
24.0 1177 1305 -9.81
24.1 1164 1284 -9.35
24.2 1152 1003 14.86
24.3 1139 988 15.28
24.4 1127 986 14.30
24.5 1115 983 13.43
24.6 1103 987 11.75
24.7 1091 963 13.29
24.8 1079 977 10.44
24.9 1068 985 8.43

retrdaion 25 .0 1056 1102 -4 .17
zoe 26.9 66908 76760 -12.83

27.0 961 971 -1.03
27.1 877 952 -7.88
27.2 833 943 -11.66
27. 3 824 930 -11.40
27.4 814 901 -9.65
27.5 806 889 -9.34
27.6 798 841 -5.11
27.7 788 849 -7.18
27.8 780 839 -7.03
27.9 772 849 -9.06

Table 3 (continued)
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CL AN(THEORY) AN(EXPERIMENT) %
(MM) (CYCLES) (CYCLES) ERROR

28.0 763 862 -11.48
28.1 755 850 -11.17
28.2 747 825 -9.45
28.3 739 858 -13.87
28.4 730 847 -13.81
28.5 723 804 -10.07
28.6 715 760 -5.92
28.7 707 770 -8.18
28.8 699 754 -7.29
28.9 692 767 -9.78

rtardmio 29.0 684 824 -16.99
zone 31.1 55293 60602 -8.76

31.2 558 622 -10.28
31.3 530 607 -12.68
31.4 523 604 -13.41
31.5 518 615 -15.77
31.6 512 559 -8.41
31.7 506 598 -15.38
31.8 500 517 -3.28
31.9 495 556 -10.97
32.0 489 558 -12.36
32.1 484 499 -3.00
32.2 478 545 -12.29
32.3 472 418 -12.92
32.4 467 468 -0.02
32.5 462 519 -10.98
32.6 457 511 -10.56
32.7 451 459 1.77
32.8 446 405 10.12
32.9 441 402 9.70
33.0 435 416 4.57

Table 3 (continued)
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P=0. 3

CL AN(THEORY) AN(EXPERIMENT) %
(MN) (CYCLES) (CYCLES) ERROR

16.9 2295 1879 22.14
17.0 2267 1879 20.65
17.1 2240 1894 18.27
17.2 2214 2321 -4.61
17.3 2187 1880 16.33
17.4 2161 1884 14.70
17.5 2136 2011 6.22
17.6 2111 1976 6.83
17.7 2086 1937 7.69
17.8 2061 1890 9.05
17.9 2037 1884 8.12

r.wio_ 18.0 2014 1947 3.44
ze 19.6 88950 96093 -7.43

19.7 2001 1844 8.51
19.8 1982 1833 8.12
19.9 1814 1814 0.00
20.0 1663 1759 -5.46
20.1 1582 1725 -8.29
20.2 1564 1719 -9.02
20.3 1547 1749 -11.55
20.4 1529 1415 8.06
20.5 1513 1416 6.85
20.6 1495 1424 4.99
20.7 1479 1304 13.42
20.8 1463 1409 3.83
20.9 1446 1311 10.30
21.0 1430 1426 0.28
21.1 1415 1307 8.26
21.2 1398 1310 6.72
21.3 1384 1312 5.49
21.4 1368 1310 4.43
21.5 1353 1300 4.31
21.6 1339 1394 -3.95
21.7 1323 1387 -4.61
21.8 1309 1396 -6.23
21.9 1295 1309 -1.07
22.0 1281 1303 -1.69
22.1 1267 1328 -4.59

Table 3 (Continued)
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CL AN(THEORY) AN(EXPERIMENT) %
(MM) (CYCLES) (CYCLES) ERROR

22.2 1252 1310 -4.42
22.3 1240 1318 -5.92
22.4 1225 1301 -5.84
22.5 1213 1303 -6.91
22.6 1199 1308 -8.33
22.7 1186 1259 -5.80
22.8 1173 1179 -0.51
22.9 1161 1097 5.83
23.0 1147 1005 14.13
23.1 1136 986 15.21
23.2 1123 1203 -6.65
23.3 1111 966 15.01
23.4 1099 1007 9.14
23.5 1087 1000 8.70
23.6 1076 999 7.71
23.7 1064 992 7.26
23.8 1052 973 8.12
23.9 1041 974 6.88
24.0 1030 1018 1.18
24.1 1019 980 3.98
24.2 1007 985 2.23
24.3 997 960 3.85
24.4 986 974 1.23
24.5 976 962 1.46
24.6 965 973 -0.82
24.7 955 957 -0.21
24.8 944 960 -1.67
24.9 934 972 -3.91

reurduii_ 25.0 925 1075 -13.95
Zme 26.9 55587 62279 -10.74

27.0 842 933 -9.75
27.1 767 846 -9.33
27.2 729 675 8.00
27.3 721 677 6.50
27.4 712 845 -15.74
27.5 706 802 -11.97
27.6 697 706 -1.27
27.7 690 741 -6.88

Table 3 (continued)
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CL AN(THEORY) AN(EXPERIMENT) %
(MM) (CYCLES) (CYCLES) ERROR

27.8 683 672 1.64
27.9 675 773 -12.68
28.0 668 749 -10.81
28.1 660 681 -3.08
28.2 654 684 -4.39
28.3 646 671 -3.72
28.4 640 674 -5.04
28.5 632 634 -0.31
28.6 625 637 -1.88
28.7 619 685 -9.64
28.8 612 681 -10.13
28.9 605 632 -4.27

mardian 29.0 599 668 -10.32
zaeC 31.1 44706 46274 -3.39

31.2 488 497 -1.81
31.3 464 481 -3.53
31.4 458 500 -8.40
31.5 453 501 -9.58
31.6 448 421 6.41
31.7 443 451 -1.77
31.8 438 485 -9.69
31.9 432 419 3.10
32.0 428 417 2.64
32.1 423 463 -8.63
32.2 419 418 0.24
32.3 413 410 0.73
32.4 409 456 -10.30
32.5 404 407 -0.74
32.6 399 404 -1.24
32.7 395 409 -3.42
32.8 390 399 -2.25
32.9 386 396 -2.52
33.0 382 397 -3.78

Table 3 (continued)
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P= .4

CL AN(THEORY) AN(EXPERIMENT) %
(MM) (CYCLE) (CYCLE) ERROR

16.90 2023 1832 10.43
17.00 2000 1835 8.99
17.10 1976 1835 7.68
17.20 1952 1888 3.39
17.30 1930 1848 4.44
17.40 1906 1828 4.27
17.50 1884 1880 0.21
17.60 1861 1836 1.36
17.70 1840 1880 -2.13
17.80 1818 1849 -1.68
17.90 1796 1878 -4.37

meardsio 18.00 1776 1880 -5.53
zon 19.60 69614 76566 -9.08

19.70 1753 1615 8.54
19.80 1748 1619 7.97
19.90 1600 1517 5.47
20.00 1467 1309 12.07
20.10 1395 1350 3.33
20.20 1379 1311 5.19
20.30 1365 1307 4.44
20.40 1348 1344 0.30
20.50 1334 1311 1.75
20.60 1319 1413 -6.65
20.70 1305 1394 -6.38
20.80 1290 1313 -1.75
20.90 1275 1303 -2.15
21.00 1262 1414 -10.75
21.10 1247 1284 -2.88
21.20 1234 1137 8.53
21.30 1220 1104 10.51
21.40 1207 1195 1.00
21.50 1193 1092 9.25
21.60 1181 1119 5.54
21.70 1167 1058 10.30
21.80 1155 1043 10.74
21.90 1142 1095 4.29
22.00 1129 1072 5.32
22.10 1117 1075 3.91
22.20 1105 1068 3.46

Table 3 (continued)
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CL AN(THEORY) AN(EXPERIMENT) %
(MM) (CYCLE) (CYCLE) ERROR

22.30 1093 1108 -1.35
22.40 1081 989 9.30
22.50 1069 990 7.98
22.60 1058 1000 5.80
22.70 1046 973 7.50
22.80 1035 986 4.97
22.90 1023 972 5.25
23.00 1013 990 2.32
23.10 1001 979 2.25
23.20 991 999 -0.80
23.30 980 940 4.26
23.40 969 1002 -3.29
23.50 959 980 -2.14
23.60 948 972 -2.47
23.70 939 981 -4.28
23.80 928 867 7.04
23.90 918 982 -6.52
24.00 908 990 -8.28
24.10 899 876 2.63
24.20 888 907 -2.09
24.30 880 816 7.84
24.40 869 965 -9.95
24.50 861 796 8.17
24.60 851 958 -11.17
24.70 842 866 -2.77
24.80 833 872 -4.47
24.90 824 858 -3.96

,,urdsio 25.00 815 887 -8.12
zc 26. 90 49499 52846 -6.33

27.00 743 708 4.94
27.10 676 605 11.74
27.20 643 647 -0.62
27.30 635 670 -5.22
27.40 629 608 3.45
27.50 622 669 -7.03
27.60 615 630 -2.38
27.70 609 671 -9.24
27.80 602 631 -4.60
27.90 596 631 -5.55

Table 3 (continued)
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CL AN(THEORY) LN(EXPERIMENT) %
(MM) (CYCLE) (CYCLE) ERROR

28.00 589 671 -12.22
28.10 582 547 6.40
28.20 577 604 -4.47
28.30 570 580 -1.72
28.40 563 532 5.83
28.50 558 581 -3.96
28.60 552 581 -4.99
28.70 545 554 -1.62
28.80 540 573 -5.76
28.90 534 576 -7.29

riardaio 29.00 528 513 2.92
zoe 31.10 42429 40755 4.11

31.20 431 469 -8.10
31.30 409 418 -2.15
31.40 404 418 -3.35
31.50 399 402 -0.75
31.60 395 415 -4.82
31.70 391 416 -6.01
31.80 386 362 6.63
31.90 382 413 -7.51
32.00 377 412 -8.50
32.10 373 402 -7.21
32.20 369 410 -10.00
32.30 365 406 -10.10
32.40 360 390 -7.69
32.50 357 391 -8.70
32.60 352 350 0.57
32.70 348 334 4.19
32.80 344 316 8.86
32.90 340 313 8.63
33.00 337 311 8.36

Table 3 (continued)
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P= .5

CL AN(THEORY) AN(EXPERIMENT) %(MM) (CYCLE) (CYCLE) ERROR
16.90 1780 1616 10.1517.00 1759 1622 8.4517.10 1737 1679 3.4517.20 1718 1644 4.50
17.30 1696 1620 4.6917.40 1677 1633 2.6917.50 1657 1618 2.4117.60 1637 1537 6.5117.70 1618 1648 -1.8217.80 1599 1537 4.0317.90 1580 1604 -1.50zurdia_ 18.00 1562 1431 9.1519.60 63381 71592 -11.4719.70 1683 1503 11.9819.80 1537 1454 5.7119.90 1408 1310 7.4820.00 1290 1187 8.6820.10 1227 1122 9.3620.20 1213 1107 9.5820.30 1200 1101 8.9920.40 1186 1105 7.3320.50 1173 1101 6.5420.60 1160 1219 -4.8420.70 1148 1188 -3.3720.80 1134 1102 2.9020.90 1122 1108 1.2621.00 1109 1104 0.4521.10 1098 1082 1.4821.20 1085 1079 0.5621.30 1073 1079 -0.5621.40 1061 1063 -0.1921.50 1050 1095 -4.1121.60 1038 975 6.4621.70 1027 998 2.9121.80 1015 972 4.4221.90 1005 993 1.2122.00 993 879 12.9722.10 983 874 12.47

Table 3 (continued)
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CL AN(THEORY) AN(EXPERIMENT) %
(MM) (CYCLE) (CYCLE) ERROR

22.20 971 888 9.35
22.30 962 983 -2.14
22.40 950 966 -1.66
22.50 941 877 7.30
22.60 930 975 -4.62
22.70 920 917 0.33
22.80 910 963 -5.50
22.90 900 880 2.27
23.00 891 958 -6.99
23.10 881 919 -4.13
23.20 871 966 -9.83
23.30 862 911 -5.38
23.40 852 885 -3.73
23.50 844 881 -4.20
23.60 834 821 1.58
23.70 825 872 -5.39
23.80 816 824 -0.97
23.90 808 795 1.64
24.00 799 775 3.10
24.10 790 714 10.64
24.20 782 687 13.83
24.30 773 739 4.60
24.40 765 776 -1.42
24.50 757 696 8.76
24.60 748 688 8.72
24.70 741 677 9.45
24.80 732 689 6.24
24.90 725 669 8.37

rmLrdazi 25.00 717 658 8. 97
zone 26.90 43217 46671 -7.40

27.00 653 632 3.32
27.10 595 631 -5.71
27.20 565 631 -10.46
27.30 559 630 -11.27
27.40 553 629 -12.08
27.50 548 631 -13.15
27.60 541 628 -13.85
27.70 535 583 -8.23

Table 3 (continued)
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CL AN (THEORY) AN (EXPERIMENT) %
(MM) (CYCLE) (CYCLE) ERROR

27.80 529 528 0.19
27.90 524 527 -0.57
28.00 518 531 -2.45
28.10 513 528 -2.84
28.20 506 531 -4.71
28.30 502 569 -11.78
28.40 496 428 15.89
28.50 490 435 12.64
28.60 486 468 3.85
28.70 479 441 8.62
28.80 475 466 1.93
28.90 470 456 3.07

'f__ 29.00 464 468 -0.8531.10 34678 32033 8.26
31.20 379 412 -8.01
31.30 359 415 -13.49
31.40 356 414 -14.01
31.50 351 407 -13.76
31.60 347 413 -15.98
31.70 344 414 -16.91
31.80 340 353 -3.68
31.90 335 409 -18.09
32.00 332 408 -18.63
32.10 328 402 -18.41
32.20 325 394 -17.51
32.30 321 298 7.72
32.40 317 305 3.93
32.50 313 297 5.39
32.60 310 293 5.80

Table 3 (continued)
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P= .6

CL AN(THEORY) AN(EXPERIMENT) %
(MM) (CYCLE) (CYCLE) ERROR

16.90 1547 1394 10.98
17.00 1528 1393 9.69
17.10 1510 1290 17.05
17.20 1492 1205 23.82
17.30 1475 1202 22.71
17.40 1457 1248 16.75
17.50 1440 1415 1.77
17.60 1422 1317 7.97
17.70 1406 1321 6.43
17.80 1390 1340 3.73
17.90 1373 1410 -2.62

ardaai __18.00 1357 1325 2.42
zoe 19.60 57403 64368 -10.82

19.70 1462 1280 14.22
19.80 1336 1310 1.98
19.90 1223 1292 -5.34
20.00 1121 1196 -6.27
20.10 1067 996 7.13
20.20 1054 970 8.66
20.30 1043 979 6.54
20.40 1030 1003 2.69
20.50 1020 976 4.51
20.60 1008 1002 0.60
20.70 997 987 1.01
20.80 986 975 1.13
20.90 975 873 11.68
21.00 964 981 -1.73
21.10 953 893 6.72
21.20 943 879 7.28
21.30 933 867 7.61
21.40 922 894 3.13
21.50 913 883 3.40
21.60 902 879 2.62
21.70 892 967 -7.76
21.80 882 867 1.73
21.90 873 881 -0.91
22.00 864 819 5.49
22.10 853 822 3.77
22.20 845 791 6.42

Table 3 (continued)
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CL AN(THEORY) AN(EXPERIMENT) %
(MM) (CYCLE) (CYCLE) ERROR

22.30 835 875 -4.57
22.40 826 826 0.00
22.50 818 784 4.34
22.60 808 859 -5.94
22.70 800 740 8.11
22.80 790 783 0.89
22.90 783 784 -0.13
23.00 774 766 1.04
23.10 765 703 8.82
23.20 757 691 9.55
23.30 749 739 1.35
23.40 741 695 6.62
23.50 733 644 13.82
23.60 725 641 13.10
23.70 717 618 16.02
23.80 709 641 10.61
23.90 702 639 9.86
24.00 694 676 2.66
24.10 687 639 7.51
24.20 679 642 5.76
24.30 672 636 5.66
24.40 665 639 4.07
24.50 658 637 3.30
24.60 650 640 1.56
24.70 644 638 0.94
24.80 636 633 0.47
24.90 630 673 -6.39

ta rdafio- 25.00 623 583 6.86
zone

26.90 37575 40279 -6.71
27.00 568 528 7.58
27.10 517 527 -1.90
27.20 491 529 -7.18
27.30 486 506 -3.95
27.40 481 485 -0.82
27.50 475 440 7.05
27.60 470 445 5.62
27.70 465 428 8.64
27.80 460 426 7.98

Table 3 continued)
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CL AN(THEORY) AN(EXPERIMENT) %
(MM) (CYCLE) (CYCLE) ERROR

27.90 456 425 7.29
28.00 450 429 4.90
28.10 445 426 4.46
28.20 441 427 3.28
28.30 435 430 1.16
28.40 431 425 1.41
28.50 427 428 -0.23
28.60 421 412 2.18
28.70 417 426 -2.11
28.80 413 433 -4.62
28.90 408 411 -0.73

ardation 29.00 403 402 0.25
Zone 31.10 32136 30647 4.86

31.20 329 320 2.81
31.30 312 312 0.00
31.40 309 313 -1.28
31.50 306 318 -3.77
31.60 302 309 -2.27
31.70 298 309 -3.56
31.80 295 316 -6.65
31.90 292 305 -4.26
32.00 288 271 6.27
32.10 286 303 -5.61
32.20 282 298 -5.37
32.30 278 295 -5.76
32.40 276 296 -6.76
32.50 272 294 -7.48

Table 3 (continued)
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P= .7

CL AN(THEORY) AN(EXPERIMENT) %
(MM) (CYCLE) (CYCLE) ERROR

16.90 1312 1154 13.69
17.00 1295 1084 19.46
17.10 1280 1120 14.29
17.20 1265 1190 6.30
17.30 1250 1085 15.21
17.40 1235 1198 3.09
17.50 1221 1103 10.70
17.60 1206 1118 7.87
17.70 1192 1211 -1.57
17.80 1178 1113 5.84
17.90 1164 1120 3.93

.,dio_ 18.00 1150 1207 -4.72
zon 19. 60 48744 50186 -2.87

19.70 1240 1184 4.73
19.80 1132 1103 2.63
19.90 1037 1080 -3.98
20.00 950 973 -2.36
20.10 904 977 -7.47
20.20 894 881 1.48
20.30 884 883 0.11
20.40 874 884 -1.13
20.50 864 825 4.73
20.60 855 877 -2.51
20.70 845 846 -0.12
20.80 835 790 5.70
20.90 827 819 0.98
21.00 817 870 -6.09
21.10 808 821 -1.58
21.20 800 820 -2.44
21.30 790 820 -3.66
21.40 782 804 -2.74
21.50 773 748 3.34
21.60 765 762 0.39
21.70 756 769 -1.69
21.80 749 739 1.35
21.90 739 769 -3.90
22.00 732 741 -1.21
22.10 724 741 -2.29
22.20 716 698 2.58

Table 3 (continue)
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CL AN(THEORY) AN(EXPERIMENT) %
(MM) (CYCLE) (CYCLE) ERROR

22.30 708 618 14.56
22.40 700 640 9.38
22.50 693 644 7.61
22.60 685 685 0.00
22.70 678 636 6.60
22.80 671 613 9.46
22.90 663 639 3.76
23.00 656 614 6.84
23.10 649 636 2.04
23.20 641 642 -0.16
23.30 635 637 -0.31
23.40 628 614 2.28
23.50 622 639 -2.66
23.60 614 635 -3.31
23.70 608 639 -4.85
23.80 601 637 -5.65
23.90 595 635 -6.30
24.00 589 637 -7.54
24.10 582 635 -8.35
24.20 576 636 -9.43
24.30 569 582 -2.23
24.40 564 584 -3.42
24.50 557 584 -4.62
24.60 552 585 -5.64
24.70 545 575 -5.22
24.80 540 570 -5.26
24.90 534 573 -6.81

retardatio 25. 00 528 578 -8.65
zone 26.90 32479 37184 -12.65

27.00 481 425 13.18
27.10 438 423 3.55
27.20 417 427 -2.34
27.30 412 425 -3.06
27.40 407 420 -3.10
27.50 403 426 -5.40
27.60 398 423 -5.91
27.70 395 424 -6.84
27.80 330 423 -7.80

Table 3 (continue)
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CL AN(THEORY) AN(EXPERIMENT) %
(MM) (CYCLE) (CYCLE) ERROR

27.90 386 424 -8.96
28.00 381 421 -9.50
28.10 378 424 -10.85
28.20 373 426 -12.44
28.30 370 424 -12.74
28.40 365 420 -13.10
28.50 361 423 -14.66
28.60 358 401 -10.72
28.70 353 389 -9.25
28.80 350 367 -4.63
28.90 346 396 -12.63

retardation 29.00 342 387 -11.63
zone 31.10 24646 20704 19.04

30.60 515 518 -0.58
30.70 461 479 -3.76
30.80 414 413 0.24
30.90 373 397 -6.05
31.00 338 348 -2.87
31.10 306 312 -1.92
31.20 279 315 -11.43
31.30 265 304 -12.83
31.40 262 304 -13.82
31.50 259 315 -17.78
31.60 256 274 -6.57
31.70 253 276 -8.33
31.80 250 311 -19.61
31.90 247 280 -11.79
32.00 245 266 -7.89
32.10 241 266 -9.40
32.20 239 266 -10.15
32.30 237 261 -9.20

Table 3 (continued)
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P= .8

CL AN(THEORY) AN(EXPERIMENT) %
(MM) (CYCLE) (CYCLE) ERROR

16.90 1057 941 12.33
17.00 1044 943 10.71
17.10 1031 942 9.45
17.20 1020 1004 1.59
17.30 1007 986 2.13
17.40 996 966 3.11
17.50 983 926 6.16
17.60 972 928 4.74
17.70 961 893 7.61
17.80 949 883 7.47
17.90 938 925 1.41

ardazion 18.00 928 987 -5.98
ze 19.60 39254 48723 -19.43

19.70 999 893 11.87
19.80 913 807 13.14
19.90 835 818 2.08
20.00 766 802 -4.49
20.10 729 822 -11.31
20.20 720 792 -9.09
20.30 712 743 -4.17
20.40 705 787 -10.42
20.50 696 741 -6.07
20.60 689 676 1.92
20.70 681 640 6.41
20.80 674 642 4.98
20.90 666 640 4.06
21.00 658 674 -2.37
21.10 652 642 1.56
21.20 644 643 0.16
21.30 637 641 -0.62
21.40 630 641 -1.72
21.50 623 640 -2.66
21.60 617 639 -3.44
21.70 609 617 -1.30
21.80 603 633 -4.74
21.90 597 622 -4.02
22.00 589 637 -7.54
22.10 584 636 -8.18

Table 3 (continued)
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CL AN(THEORY) AN(EXPERIMENT) %
(MM) (CYCLE) (CYCLE) ERROR

22.20 577 639 -9.70
22.30 570 668 -14.67
22.40 565 636 -11.16
22.50 558 636 -12.26
22.60 552 597 -7.54
22.70 547 535 2.24
22.80 540 537 0.56
22.90 534 537 -0.56
23.00 529 537 -1.49
23.10 523 531 -1.51
23.20 517 536 -3.54
23.30 512 532 -3.76
23.40 506 535 -5.42
23.50 501 534 -6.18
23.60 495 533 -7.13
23.70 490 537 -8.75
23.80 485 533 -9.01
23.90 479 533 -10.13
24.00 474 533 -11.07
24.10 470 531 -11.49
24.20 464 532 -12.78
24.30 459 529 -13.23
24.40 454 532 -14.66
24.50 449 530 -15.28
24.60 445 482 -7.68
24.70 439 481 -8.73
24.80 435 467 -6.85
24.90 430 412 4.37

reirdation 25. 00 426 430 -0. 93
zon 26.90 27758 31478 -11.82

27.00 388 349 11.17
27.10 353 375 -5.87
27.20 336 374 -10.16
27.30 332 309 7.44
27.40 328 306 7.19
27.50 325 321 1.25
27.60 321 306 4.90
27.70 318 319 -0.31

Table 3 (continued)
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CL AN(THEORY) &N(EXPERIMENT) %
(MM) (CYCLE) (CYCLE) ERROR

27.80 314 308 1.95
27.90 311 306 1.63
28.00 308 337 -8.61
28.10 304 306 -0.65
28.20 301 305 -1.31
28.30 298 320 -6.88
28.40 294 306 -3.92
28.50 291 304 -4.28
28.60 288 288 0.00
28.70 285 302 -5.63
28.80 282 307 -8.14
28.90 279 331 -15.71

ardasion 29.00 275 332 -17.17
ze 31.10 21589 17284 24.91

31.20 225 272 -17.28
31.30 213 271 -21.40
31.40 211 250 -15.60
31.50 209 225 -7.11
31.60 206 228 -9.65
31.70 204 208 -1.92
31.80 202 206 -1.94
31.90 199 205 -2.93
32.00 197 203 -2.96

Table 3 (continued)
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P= .9

CL LN(THEORY) AN(EXPERIMENT) %
(MM) (CYCLE) (CYCLE) ERROR

17.50 696 592 17.57
17.60 688 607 13.34
17.70 681 643 5.91
17.80 672 682 -1.47
17.90 664 643 3.27

mmr io 18.00 657 617 6.48
19.60 25363 24362 4.11
19.70 707 644 9.78
19.80 646 606 6.60
19.90 592 638 -7.21
20.00 542 640 -15.31
20.10 516 564 -8.51
20.20 510 541 -5.73
20.30 505 537 -5.96
20.40 498 541 -7.95
20.50 493 539 -8.53
20.60 488 518 -5.79
20.70 482 538 -10.41
20.80 477 535 -10.84
20.90 472 533 -11.44
21.00 466 518 -10.04
21.10 462 534 -13.48
21.20 456 504 -9.52
21.30 451 487 -7.39
21.40 446 454 -1.76
21.50 441 435 1.38
21.60 437 434 0.69
21.70 431 435 -0.92
21.80 427 411 3.89
21.90 423 439 -3.64
22.00 417 431 -3.25
22.10 413 411 0.49
22.20 409 433 -5.54
22.30 404 432 -6.48
22.40 400 433 -7.62
22.50 395 433 -8.78
22.60 391 432 -9.49
22.70 387 431 -10.21
22.80 382 394 -3.05

Table 3 (continued)
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CL AN (THEORY) 6N (EXPERIMENT) %
(MM) (CYCLE) (CYCLE) ERROR

22.90 379 360 5.28
23.00 374 375 -0.27
23.10 370 355 4.23
23.20 367 535 -31.40
23.30 362 410 -11.71
23.40 358 329 8.81
23.50 355 408 -12.99
23.60 351 351 0.00
23.70 347 332 4.52
23.80 343 337 1.78
23.90 339 310 9.35
24.00 336 329 2.13
24.10 332 310 7.10
24.20 329 329 0.00
24.30 325 308 5.52
24.40 321 309 3.88
24.50 319 303 5.28
24.60 314 327 -3.98
24.70 312 308 1.30
24.80 308 308 0.00
24.90 304 330 -7.88

rardaion 25.00 302 332 -9.04
zon 26.90 19422 22168 -12.39

26.60 410 405 1.23
26.70 368 404 -8.91
26.80 333 306 8.82
26.90 302 304 -0.66
27.00 274 304 -9.87
27.10 251 284 -11.62
27.20 237 284 -16.55
27.30 235 273 -13.92
27.40 233 273 -14.65
27.50 230 274 -16.06
27.60 227 273 -16.85
27.70 225 274 -17.88
27.80 223 273 -18.32
27.90 220 272 -19.12
28.00 218 273 -20.15

Table3 (continued)

66



CL AN(THEORY) AN(EXPERIMENT) %
(MM) (CYCLE) (CYCLE) ERROR

28.10 215 272 -20.96
28.20 213 272 -21.69
28.30 211 273 -22.71
28.40 208 272 -23.53
28.50 207 271 -23.62
28.60 204 273 -25.27
28.70 201 271 -25.83
28.80 200 273 -26.74
28.90 197 273 -27.84

mdi 29.00 196 272 -27.94
zone 31.10 14578 11642 25.22

30.60 294 298 -1.34
30.70 263 299 -12.04
30.80 236 278 -15.11
30.90 213 278 -23.38
31.00 193 237 -18.57
31.10 175 227 -22.91
31.20 159 217 -26.73
31.30 151 196 -22.96
31.40 149 196 -23.98
31.50 148 196 -24.49
31.60 146 196 -25.51
31.70 145 195 -25.64
31.80 142 193 -26.42
31.90 142 194 -26.80

Table 3 (continued)
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CHAPTER IV

CONCLUSIONS

1. The goal of this research program was to develop a crack growth

model which takes into account the random nature of the crack

evolution in real solids. This was achieved by viewing the growth

process as a Markovian stochastic process, discrete in state and

inhomogenous with respect to time. This led to the derivation of a

law that predicts the crack jump from ond state to the following state

with a specified probability, i.e. yielding constant probability crack

growth curves. In the model, the transition intensity of the process is

identified as a function of the effective stress intensity factor. This

permits the consideration of the load interaction history and makes

the model a valuable design and reliablity tool for constant, as well

as, random load applications. A fundamental concept of the model is

the assumption that the crack growth curve produced by an

appropriate continuum law is identical to the median probability

curve which corresponds to the value of Pr(i)=0. 5 6 ; this was

sufficient to identify the remaining constant probabilitty crack

growth curves.

2. An in-house experimental program was executed to generate

constant probability crack growth curves for three different loading

conditions by using 180 Al 7075-T6 center-notched flat specimen. A

comparison was then made between these curves and those

theoretically obtained for each corresponding test condition; full

analysis of this application is provided in Appendices A-C.
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3. An in-house experimental program was carried out to generate

constant probability crack growth curves for conditions of overload

application. In these tests sixty-five Ti-6A1-4V compact tension

specimens were used under the same base loading and for the same

overload ratio applied to three different crack lengths. The

corresponding theoretical constant probability crack growth curves

were calculated using the proposed model. A critical step in these

calculations was the determination of the effective stress intensity

factor during retardation. This was accomplished by separating the

retardation mechanisms and setting up experimental load conditions

so that the only governing mechanism was the crack tip compressive

residual stress. Comparision between experimental and theoretical

crack growth curves indicated prediction error of average 8%.

Several remarks concerning the experimental observations are

called for here:

A- Following an overload, two separate zones can be distinguished in

front of the crack tip as shown in Fig. 11. The first is a ductile

rupture zone and coincides with the sudden peak in the crack growth

rate. The width of this zone increases as the crack length, at which

the overload is applied, increases; see figure 12. The second region is

the retardation zone; it was observed that for the same stress ratio.

R, and the same overload ratio, the number of cycles, Nd, spent in

this region decrease- as the crack length increases. This is contrary to

observations made by AroneI371. Also results of the current

experiments seem to validate the conclusions drawn by Lankford

and Davidson[451 that Nd decreases as R increases.
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B- In several tests an apparent temporary crack tip arrest was

observed in the retardation zone. In each case the crack succeeded in

crossing this zone and regaining an accelerated growth equal to that

existing prior to the overload. Further investigation of these arrrest

regions showed, in all test specimens, traces of crack growth

striations indicating that growth existed in duration of apparent

ariest. The failure to detect this behavior could be due to the

inability to measure the associated very small crack growth using the

potential drop measurement system. Examples of these types of

striations, before overload application as well as in the region of

apparent arrest, are shown in figure 13.

C- The test specimens, all of which were made of Ti-6AI-4V, a highly

textured material, responded to the application of the overload by

instantaneous crack tip extension via ductile rupture on a plane

inclined to the normal-to-load plane, see figure 14. The length of the

defected crack component and its angle, b and q, respectively, in

Figure 15 were found to depend on the crack length at which the

defection occurs; as the crack length increases, b increases while q

decreases. Due to the orientation of the deflected component, the

governing stress intensity factor at its tip is viewed as a combination

of KI and K11. As the loading cycle returns to its base form, the value

of KiI decays gradually as the deflected crack tip orients itself back

towards the original fracture plane, see Figure 15. The length of tile

deflected crack and its transition coincides with tile combined length

of the overload rupture and delayed zones. It must however, be

noted that this crack deflection phenomenon is limited to tile surface

7 0



layer, i.e. the plain stress condition with a depth of less than 500 .m

as illustrated in Figure 16.

Finally, while the work in this program encourages the validity of

the proposed model's ability to predict scatter in the crack growth

behavior, it also emphasizes a specific shortcoming:

On the basis of the extensive experimental work carried out during

this program, it has been observed that crack growth scatter could be

divided into two stages; the first corresponding to short crack lengths

and the second corresponding to long cracks. Short lengths promote

the highest scatter reflecting the faci that at this length the

microstructural parameters, such as grain size and slip system

dominate. As the crack length increases scatter tends to decrease, an

indication that the growth process becomes a stress controlled

phenomenon. The use of stochastic models should therefore, be

directed primarily towards short crack applications. In this respect

the proposed model should be further developed to include, in an

explicit form, parameters that indentify the role of microstructure.
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Figure 14(a) Change in the crack orientation due to overload
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PROBABILISTIC DESCRIPTION OF FATIGUE CRACK
GROWTH IN POLYCRYSTALLINE SOLIDS

H. GHONEM and S. DORE
Mechanics of Solids Laboratory, Department of Mechanical Engineering and Applied

Mechanics. University of Rhode Island. Kingston. RI 02881. U.S.A.

Abstract-A stochastic model describing the crack evolution and scatter associated %kith the
crack propagation process has been built on the basis of the discontinuous Markovian process.
The evolution and scatter are identified in terms of constant probability curves whose equation
is derived as In P(i) = B(eA 'I - e"). i a i., where i is the number of cycles. B and K are
crack-length-dependent variables. P,(i) is the probabiliity of the crack being at position r along
the fracture surface after i cycles elapse and I is the minimum number of cycles required for
the crack to advance from one position on the fracture surface to the next. The validity of the
model is established by comparing the crack growth curves generated for Al 2024-T3 at a specific
loading condition with those experimentally obtained.

INTRODUCTION

LABORATORY TESTS conducted on different polycrystalline materials exhibited considerable var-
iation in the crack growth characteristics data. This variation, or scatter, is considered a major
factor in the gap that exists between theoretical predictions of existing continuum crack prop-
agation models and experimental observations.

Several studies. employing theory of probability concepts. have been developed to predict
and characterize the variation in crack propagation data. These studies generally follow two
approaches. The first approach is based on the introduction of random variables encompassing
the scatter sources to replace the deterministic parameters in continuum crack propagation
rules such as the Paris-Erdogan Equation [II which is widely studied and used. The result of
this operation is viewed as a sample crack growth equation by which mean crack position and
associated variance can be calculated. Examples of models belonging to this approach are those
of Hoeppner and Krupp [2]. Gurney [3]. Ostergaard and Hillberry [4] and others 15-71.

The second approach is based on the assumption that the crack propagation process could
be formulated in terms of a particular discontinuous Markovian process. This leads to the
description of the crack length in the form of its probability distribution whose evolution in
time characterizes the nondeterministic nature of the crack propagation process. Examples of
these models are found in the work of Ghonem and Provan 181 and Bogdanoff and Kozin [91.

This paper is an attempt to extend the concepts presented in Ref. 181 to produce a theoretical
method which will estimate the crack growth scatter at any stress level. This is achieved by
developing the sample functions of the crack growth process in terms of a constant-probabilit%
crack growth criterion. Mathematical elements of this criterion are detailed in the first part of
this paper while the second part deals with the use of the model in a numerical example to
estimate crack growth scatter in Aluminum 2024-T3. Emphasis is placed on the adherence of
the model to the physical aspects of the crack growth plocess and the degree of agreement
between the theoretical results of the model and corresponding experimental data.

MATHEMATICAL ELEMENTS OF THE MODEL

The stochastic model of the fatigue crack propagation as briefly described iin 181 is de\ eloped
in terms of a general pure birth, discontinuous Markosian stochastic process. The model is
haed on the assumption that the crack front can be approximated, as ,ho\sn in Fig. I. hx a
large number of elements . I...... ,I. each of' .,hich. in term,, ofthe theor\ of probabilit .
identifies a statistical trial or cxperiment. The fracturc ,titlc of the (t h trial at c c i is gI el
h% the crack length or the random , ariable a, ss hose e ,olt oiol ilth tillic shall then be estab-
lished. 'a, s,,ill hereafter be referred to as a,

t1<I
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1 2

Fig. 1. Schematic of Mode I crack propagation fracture -;urlace-

Due to the built-in limitations of all experimental techniques the observed value of a, can
only be specified within the range of

x< 11, < x -Ax, 1

,Ahere Ax Is the experimental error and x is the crack position calculated .-s (see Fig. 2)

0l
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x = rlkx: rto < r < rt 2

Here r identifies the observable zone or state along the fracture surface: r, is the initial prop-
agation state, r,. is the state just prior to catastrophic failure of the specimen and r ,I .....
r, - I are the intermediate zones.

Given that the crack is in state r. then after i cycles have elapsed from the instant of reaching
r. one of two events would occur: ai would remain in state r (event 'E,) or a, would not be in
state r (event 'E,). The following observations can now be made:

1. Due to the fact that the propagation process is an irreversible one. the crack, if it does
not stay in r. must exist in a state greater than r.

2. Since it is not possible for the crack to propagate from one state to any other state without
penetrating the immediate neighboring state, each crack could then be identified by the number
of cycles required to advance from a given state to the following one.

Based on these observations the two events 'E, and 'E, can be seen as the element of a
measurable sample space Q. see Ref. [9]. and the following definition of the probability measure
of a, becomes possible. At any fatigue cycle i the probability that ,a, is in state r, i.e. the
probability of 'E,. is defined as

P{aE'E,} = P{x < a, < x + Ax}.

i.e.

P(E,) = Pi) (3)

Therefore the probability of a, not falling within r is

P('E,) = Pi) = I - Pi). (4)

Here Pi) continuously increases as the number of cycles increase.
Furthermore. it is known that the existence of the crack front at a particular position inside

the material depends on its present mechanical and microstructure details and is not directly
influenced by the details of any of its other previous positions. More specifically. the probability
of a, propagating from state r to r + I in the cycle interval (i. i + A i) depends on the event
'E, and is independent of any event "E, ..... 'E occurring prior to i: 0 < j < i. This can be
expressed as

P{'E.1, E ... .. . .E .. .... .E, = P{'E,,rE, = P,(i) (5)

where t = r - I and *," denotes a conditional probability measure. These characteristics together
with the evolution of a, within the tMo-event space 11. describe a discontinuous Markovian
process. The function Prdi) could then be considered the transition probability linking the
probability measures of two consecutive states r and t: t = r - I. along the fracture surface.

It is now possible to describe the propagation process of the crack front in terms of the
follo" ing criteria:

1. The probabilit of a, propagating to a state different than r in Ai cycles is given b\

PjAi = PJEtL, 'E, - O(.Ai)

,Ahere &, is a positive parameter describing the crack transition rate from state r to t in A
cclcN and is thus considered a material- and time-dcpcndent ',ariablc see Bharucha-Reid Jill.

2. he corresponding prohabilit, that a, Aill be in state r during the c. cl intcr\al A1i t

I' \i i'I:_2 , 'l 0 - %i)

- (I A,2AiI 0) A.-).
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3. The probability that a, is in a state different from r + I is

P,,(Mi) = PIE.,rE,}

= 0(Ai): t > r + !. (8)

Since

P{rEi- .} = P{rE/j1E,} . PjrE, (9)

therefore substituting eqns (6). (7) and (8) in eqn (9), the probability of the event 'E.1, can be
obtained as

P,(i + Ai) = (I - \,Ai)P,(i) + 0(1i). (10)

By transposing and taking the limit Ai--* 0, eqn (10) becomes

dPr(i) (11)= -XPri).( I)
di

The solution of this equation is

InPr(i) - f x, di + L,, (12)

where L, is a constant.
An important element in solving this equation is the parameter \r which is seen here as a

measure of the crack growth rate. This measure is assumed to have the following properties:
1. In the presence of continuous cyclic loading the longer the cycle duration during which

the crack is in a specific state, the higher the probability that the propagation threshold of the
crack tip is satisfied and the higher the probability that the crack will advance. This indicates
that in a general case. Xr increases monotonically with an increase in the number of cycles i.

2. Ar being a material-dependent variable should then possess a nonzero positive value at
cycle i = 0.

Based on these observations A, is chosen to have the form

Xr = L 2eK. (13)

where L2 and K are crack-position independent and time dependent parameters. Substituting
(13) in (12) one obtains

In P,i) = -Be" + Li, (14)

where

L.
B =

K

Upper and lower limits of P,i) in the above equation are

I - P, (i) - 0.

The form of eqn (141 suggests that i has a lower houndar A hich satisfies the upper limit of
P,(i). This means that eqn (14) will be valid only for i - o. % herc IN i the lower houndar of
i or simply the minimum number of c~cles required for the crack to advancc from state r. In
this approach. concepts such as those of the weakest-link theory b\ Wcihu!l 1121 and others
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[13. 141 have not been taken into consideration. Hence. the upper limit condition for Pi) can
be expressed as

P4) = 1. i <it.

By invoking this upper limit condition on eqn (14) the constant LI is obtained as

L, = BeAho (15)

Equation (14) could then be written in the form

P'(i) = e e" i > Io. (16)

Pi) = I: i < Io.

This result, illustrated in Fig. 3. describes a set of curves which can be obtained by varying
P,i). Each of these curves is a constant probability curve identifying the discrete crack position
and the corresponding number of cycles. Since the variables B. K and 1 are functions of the
crack length, they are related to the :'rack length through certain constants. These constants
can be determined by using one known constant probability crack growth curve and eqn (16)
consequently becomes fully defined. The significance of this concept is that if the crack growth
curve obtained by using a continuum model is considered as being the mean growth curve, i.e.
the P(i) z 0.5 curve, a view that is consistent with the application of the majority of the
continuum models, the parameters B. K and 10 can then be calculated and eqn (16) becomes
sufficient te identify the crack length and associated scatter in number of cycles at any stress
level without the need to perform scatter experiments, in the next part of the paper this model
,will be employed in a numerical example to estimate the crack growth curves of Aluminum
2024-T3 and results will be compared to available experimental data.

8 Pz.95 P .50 Pr.01

77

4 -7-

,/ - - - - - -

0.01
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APPLICATION

The first step to be dealt with here is the determination of the unknown variables B. K and
1o in eqn (16). To achieve this the authors utilized experimental crack growth scatter data
obtained by Virkler, Hillberry and Goel [15] and Yang, Donath and Salivar [16.

The first set of data [151 is obtained from 68 identically prepared Aluminum 2024-T3 tension
specimens with a central slot perpendicular to the loading axis. The data consists of the number
of cycles necessary to reach the same specified crack length for each specimen: 164 crack
lengths are recorded ranging from 9 mm to 49.8 mm for a half crack length. The 68 sample
crack growth curves are shown in Fig. 4. These curves were utilized to obtain constant prob-
ability crack growth curves as follows: The total crack length was divided into 204 states: each
with a width of 0.2 mm. The number of cycles spent in each state was calculated and arranged
in ascending order: the largest number was assigned a probability of

Pri) I (x/68): X = 68.

and so on. up to a probability of

PAi) = I -(x/68): r = 1.

for the shortest number of cycles. Points with equal probability were connected and a set of
ten constant probability curves was generated as shown in Fig. 5. Data points representing the
number of cycles corresponding to similar discrete crack positions along three different constant
probability growth curves. P,() 0.05. 0.50 and 0.95. were used as input for eqn (16) to de-
termine the variables B. K and Io. The values obtained are listed in Table 1. These values are
plotted versus the crack length position. i.e. state r in Figs. 6(a. b. c): and by using regression
analysis the following relationships were constructed:

B = 0.018r" 2'.

K 2.498 x 10- 7r'- . (17)

1o 0.94 x 10'1(r - 0V-"1  - r- .

To confirm these relationships, another set of crack growth scatter data of IN 100. a superalloy

60 - 164 ATA POINTS PER TEST
68 REPLICRTE TESTS
CIELTR P = 4.20 KIP
P Vx = 5.2S KIP
A0 9.00 PMM.

so-R .20Z

40 /

- 30

20

:0

S 65 '30 i95 250 325

NUMBEP OF CYCLES X 10

Fit! 4 Rcph ate a % r . u, i dota set front \ irklcr, ,.ti
ijj [III



Fatigue crack growth in polycrystalline solids 1157

0.9 0.75 0.5 025 0.1
245[

14 5
t95~

451

0 60 120 180 240 300 360
NUMBER OF" CYCLES X 10

3

Fig. 5. Experimental constant-probability crack growth curves generated from data in Ref. [151.

used in certain gas turbine engines, was used [161. The data consisted of the distribution of
crack size as function of load cycles for two different load conditions as shown in Figs. 7(a.b).
Analysis similar to that done on the work of Virkler and co-workers was carried out, yielding
two sets of values for B. K and Io. They are shown in Table 2. These values are again plotted
vs the crack length position asshown in Figs. 8(a.b.c) and 9(a,b.c) and the following relation-
ships were obtained.

Test condition I

B = 0.055r" 6 ,

K = 1.362 x 10-hr 2 34 . (18)

I = 2.743 x 105[(r - 0.- O 7 1 
- r-( 71].

Test condition II
B = 0.059r0, 3.

K = 6.68 x 10-r7 r2 ' 5  (19)

10 = 1.943 x 1010'(r -1' 5 - r- 1 4]

Table I. Values of B. K and L, for different crack length position
r (Ax 0.2 mm)

Crack length II B K
position r lccles) X 10 2 x I0 X 1

55 3166 5.5 0.617
65 2269 5.8 0.856
75 1706 h.() 1.133
85 1331) 6.2 1.446
95 1066 0.4 I 79f

105 873 6.6 2.183
I 15 729 6.8 2.604
125 618 6.9 3.063
135 531) 7.1 3.555
145 460 7.2 4.086
155 403 7.3 4.647
I6;' 356 7.5 5.249
1'5 3f 7.6 e.885
185 283 6.549
19,5 255 '.8 7.249
2.115 231 8.0 '.984
215 211 S.A 8"51
225 192 8.2 9.547
235 176 8.3 I It.1 O

24S 162 8 4 11. Q"
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Fig. 7. Experimental constant-probability crack growth curves for al Test Condition I and 1b)
Test Condition 11 (Ref. [161).

Table 2. Values of B. K and 1, for different crack length positions
(.x = 0.1 in)

Crack length I, B K
position (cycles) Ix 10') 1I0

Test Condition 1

6 10280 1.915 0.946
8136 2.715 1.117

; 7203 2.836 1.719
9 5460 3.014 2.144

IO 4169 3.143 3.206
II 3387 3.263 3.777
12 2806 3.518 4.407
13 2326 3.981 5.15(0

T(,i Condition II
6 39940 2,189 0.268
7 2887) 2.423 (.3313
8 24050 2.688 427

9 14410 2.998 0 467
1) 9275 .228 0.609
II 7618 108 1 1)14
(2 64o2 3.63 1AW

I74 1 814 1 136
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Fig. 8. Relattionship bet~een H. A and A, and crack length position for Test Condition Ifor Ret.

By observing eqns 1 17). (18), 119) general forms of B. K and /,)in terms of crack length a. could
be wxritten as

B Ci"'

K C'ua". (20)

In=C1Ila - A.)"' - (I'' I.

An attempt can noA he made using eqn 116) in conjunction wAith eqn (2011 to generate constant
prohahilt curesc, for the test conditions, of Virkiler vf alI. 1151. These curves, Could then be
compared to those cxperimentallk obtained in Fig. 5. The first step is to obtain the mean crack
groAth curve utiliz'ing. its mentioned before, at continuum crack grow th equation. In this ap-
plication the Paris-FLrdogan equation in the fMiowxing form is used to generate such a curve

A ( -1 (Ti~ '' 1t?''1 t
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Fig 10. The esperimental mean crack growth curve (P,ti) 0-51 and the corresponding the-
oretical curves~ using the P-F equation %%ith different C %ais

for Al 2024-T3 the index n is equal to 4 while the p.Aiameter C attains values ranging from 3.5
x 10- ' to 3.79 x 10-"'. Equation (21) was then used to obtain the crack growth curve as
shown in Fig. 10 (C =3.79 x 10 - '. a,, = 9 mm and Au = 7Ksi). This curve is viewed here
as equivalent to the experimental mean curve. i.e. the PG) =0.5 curve.

The number of cycles corresponding to six discrete crack positions along the Paris-Erdogan
curve was then used as, input for eqns ( 16) and (20). where Pjli) = 0.5. These six equations
"~ere solved b an iterative technique employing Newton-Raphson's method. Converging val-
ues for the six constants were found as followed:

C, = 0,0563: C, = 2.04 x 107 C, 1.022 x 10

nj=0.298:= 1.917: n; --1.0.

0.9 0.75 0.5 0.25 0.1
245 'I

195/

S145

95

45
0 60 120 180 240 300 360

NUMBER OF~ CYCLES X 10O3

Ii; II Iihc,,rfc al, constant-prohahiIlt1 crack groth ij c venerated Im the ict condid,n
i cportcd in Rct I I



Fatigue crack growth in polycrystalline solids 1163

-~r ar ~. xeCjCi

3C -r3C '

r-re~~C r i

Z----------------------c rie eeriea ' ra

~i - ee e = i ~ 7.7. --. 7 Cr '7

ICI C
t 7 7 7 ., , . . , . . -C -. -t -. - ee- -

C--

7 '

~I 1



lit" H. GHONEM and S. DORE

i ., r.t 3:

-i raeZ .7.7 4 .7 e 1. r- r- x -'I wae.r = -! ret .4.~ C- C, c r- - .3-
14 --rre re r rarerI rar 'I IsaIs rare

-z

-T Cr -C - ' 3 0 - - r- e,.- a - 7eCc .X 3 eea,..-

r,. 'c x .7 r (ee. efC 3 .r- r- x -T 'o. r 3'

~~~U~ I- Crr-- - r- 3 -ri r- 7er,. C
Dz ----2r r re raer raer rare- - 4-

:z cr- x -rr- .,.C- 140

wn flC. Ia .a ,d.eteti- a Cr~ ,,re.re- r..e v.

----------------------------,rr ra C

3.C.. ~ ~ ~ ~ ~ ~ ~ -0X at C 0 C Cr ~-'Cre .rere3'C..'X 07
r, c -r -r~

E. c cx -

-. ~ ~ ~ ~ ~ 3 x'_ - - - - - - - - - - -



Fatigue crack growth in polycrystalline solids 1165

zz

,S ---=. -, r- r-R 'r

WN Nw.'~ -x rl eqC Cc *1C4 W. .

, a-. . ,7 - . . C ," .... _ _U~ ~ ~~O 0N,' 0 '~r'*~

-- - -hr 4 hir.7- hra- Si O ", .- .r- .,o -- ,-

. . . . hr . . . . . . hr. h . h
,

. ., . . . . . .. - . . . r . .
-I ci C : Ca a4

. . . . . . . . . . . . . . . . . . N . . . . .. . . . - . . N .
: 3 ' M 4 1- ri j to' r - j r. N *I FtZ t r- -C V r- S .al : -:i m a

Cit 14 rll hrct .CCr-Clhh~

. . .. . . ... ... .

-- O C 3c hr. n. hr N N
ci hr. h. .7. 11

x 7..7rhrhrh x h-rhThh.Z t ih.h. CFtV V' x z _
-. _ Car xaCUC

-7.7~- hr Cr N: t' 0 - cSaa-ctN ~ r r

Ix,

T ;c

_r t .T _h r h



1166 H. GHONEM and S. DORE

10

PZ90

. ........... ............. .

-10 ,. . a .10

-20

45 95 145 195 245

CRACK LENGTH/AX

Fig. 12. Error in percent of the proposed model for C (in the Paris-Erdogan equation) = 3.79
x j0-l0.

Making use of these constants. eqns (16) and (20) were again utilized to generate a set of
theoretical constant-probability crack growth curves as shown in Fig. II. These curves were
compared to those experimentally obtained in Fig. 5 and results of this comparison in the form
of percentage of error of number of cycles corresponding to similar crack lengths are listed in
Table 3 and summarized in Fig. 12. On the basis of these results the following observations
can be made:

I The present model succeeds in describing the evolution of the crack growth by estimating
the number of cycles required for the crack to advance from one discrete position along the
fracture surface to the following one. The evolution process was carried out for constant-
probability crack growth curves. From these curves the scatter in the crack length at a specific
fatigue as well as the scatter in the number of cycles required to advance the crack to a specific
length, can be estimated. The results of the model, when applied to Al 2024-T3 that have been
subjected to fatigue cycles with a constant stress amplitude, are in agreement with those ex-
perimentally obtained. Average error in the theoretical curves is estimated to be 5%, whic. is
within the scatter limit of any experimental curve. The accuracy of the model. however, see s
to depend on the degree of agreement between the crack growth curve obtained using a cc I
tinuum theory and the experimental mean curve. To examine this effect in the present appi
cation, the value of the parameter C in the Paris-Erdogan Equation was changed from 3.79 ),
10- ,to 3.51 x 10- " so that the deviation of the theoretical mean curve from the experimental
one is increased as shown in Fig. 10. As a result the average error in the prediction of the
model, as illustrated in Fig. 13. is increased from 5% to 13%.
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Fi I Error tin per:enl) It the propo,,eu model for C(in the Parir-trdogan equllin = '

ItI



Fatigue crack growth in polycrystalline solids 1167

150

125

100

6 S

25

45 70 95 120 145 170 195 220 245

CRACK LENGTH/AX

Fig. 14. Variation of scatter range as function of crack length position.

2. The degree of scatter in the number of cycles Qorresponding to a specified state is observed
to decrease as the crack length increases. At higher crack lengths all the cracks require about
the same number of cycles to advance from one discrete position to the following one. This
may then lead to the conclusion that the degree of scatter in the number of cycles to failure
depends on the large scatter observed in the early stages of crack propagation. This is illustrated
in Fig. 14. The effect of scatter associated with "short" cracks on the variation in the number
of cycles required for the crack to reach a critical length is currently under investigation by
the authors.

3. The notion that there is a minimum number of cycles required for the crack to advance
from one position on the fracture surface to the next immediate one has been theoretically
derived in this model through the parameter I,4 in eqn (16). This concept of "incubation time"

could be interpreted in relation to the time required for the crack tip propagation threshold
(such as a specified mobile dislocation density, a thermodynamic activation level or any other
criterion) to be satisfied. This concept warrants further study.

CONCLUDING REMARK

A model is presented here describing the crack propagation process as a discontinuous
Markovian process. Based on this. the concept of constant-probability crack growth curves
has been quantitatively derived. With the assumpotion that the crack growth curve given by
any continuum crack growth model coincides with the experimental mean growth curve, the
proposed model has demonstrated that it could sufficiently describe the evolution of the crack
length and associated scatter at any stress level.

.4Amnn ledtp'rnpnni-The authors wish to acknow ledge support of this research program by the Air Force Office of
Scientific Research through Contract No. AFOSR.84-0235-TEF.
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Abstract - This paper is concerned with the application of a mathematical model that describesthe fatigue crack growth evolution and associated scatter in polycrystalline solids. The model has

been built on the basis that an analogy exists between a particular discontinuous Markovian
stochastic process. namely the general pure birth process, and the crack propagation process. The,
crack evolution and scatter were then defined in terms of material, stress and crack-length dependent
properties and crack tip incubation time.

The application of the model is carried out by comparing the constant-probability crack
growth curves generated for three different load levels with those obtained from testing sixty Al
7075-T6 specimens for each load level. A photographic method was utilized to measure the crack-
length in this test program, by recording the residual deformation that accompanies the flanks of
the crack during propagation.

INTRODUCTION

PREDICTION OF fatigue crack growth, even under constant amplitude loading, has not been an easy
task. This is mainly because the manner in which the various parameters, such as loads, material
properties and crack geometries, affect the crack propagation is not clearly understood[l]. This,
consequently, had led to a proliferation of hypotheses and laws for describing fatigue crack
propagation (see review articles in refs [1, 2 and 3]). Most of these models are based on concepts
of the continuum theory with the assumption that cracks propagate in an ideal continuum media.
Actual metallic materials, however, are composed of random microstructure described by various
microparameters which can seriously affect the growth of a crack in these materials. As a result,
the deterministic theories can only be accepted as an approximation of the actual random fatigue
crack propagation process.

The ue of statistical distributions or probabilistic models thus becomes necessary to make
predictions of crack growth more reliable. The search for the "true" statistical distribution has
been a difficult task since in any application, the amount of crack-growth data which has been
collected for any particular case would not be sufficient to discriminate between the different types
of distributions[4]. In addition, when a series of tests on identical specimens is performed to
establish the scatter due to material properties, the uncertainties in load values and crack-length
measurements are also included in the scatter data. Due to this limitation, it is difficult to isolate
the scatter associated with material properties in any experiment. One is also hampered by the
lack of an exact physical description of the fatigue process[5]. When taking these two fators into
consideration, any probabilistic or statistical model can identify the variability of crack-length
only in a comparative sense. This means that the absolute values of the variability at a specific
load level predicted by a model may not be equal to those obtained experimentally. However, it
is possible for a ratio of variabilities predicted for two different load conditions to be equal to
that of the experimental results obtained at the same loading conditions. In this, the experimental
errors being independent of the magnitude of the applied loads, are eliminated.

There are basically two kinds of mathematical models in existence to predict the variability
in fatigue crack growth. The first employs a statistical approach in which random variables are
introduced instead of the constants in the appropriate deterministic crack growth equation. While
these models (see, for example refs [6-11 ]) are simple to use and versatile in application, they
possess some disadvantages. First, all of them are based on Paris law[ 12] where it has been shown
that other laws like the Forman's law[13] are more applicable. Secondly, the scatter parameters
in these models have no physical description and no attempts have been made to link these
parameters to the micro-structural properties. Lastly, though these models generate crack-growth

. . , i i iI I II
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data that match the experimental data reasonably well in some cases, they do not provide any
insight into the nature of the fatigue crack propagation process.

The second approach employs evolutionary methods in which the propagation of the crack
is treated in a probabilistic or stochastic sense instead of a statistical one. Making use of a specific
probability process, namely the Markovian process, the models with this approach strive to
correlate the properties of this process with those of fatigue crack propagation.

Examples of this approach are the models by Ghonem et al.[14, 15], Kozin and Bogdanoffhj16]
and Aoki and Sakata[17]. The major disadvantage in using these models is the lack of crack-
growth scatter data for different conditions which would have been helpful to check the validity
of the probabilistic assumptions on which these models were built.

The objective of this paper is to examine the results of the stochastic model developed by
Ghonem and Dore( 15] when utilized for the prediction of the crack growth evolution, in the same
material, at different loading conditions. Before proceeding on this application, a brief review of
the fundamentals of the model is presented in the next section. This will be followed by the
description of the experimental study and detailed analysis of the results.

REVIEW OF THE PROPOSED MODEL

In this model, the fracture surface is divided into a finite number of crack "states" of equal
width; a probability space of two events was defined with the condition that the crack is in state
" r" after i cycles have elapsed from the instant bf'reaching "r ". They are, the event that the crack
will remain in the state "r- and the event that the crack will not be in "r". Assuming that the
crack propagation process is irreversible and utilizing the fact that under conditions of constant
amplitude loading the existence of a crack at a particular state depends only on its present
mechanical and microstructural details, a definition for the transition probability was arrived at.
Using the criteria attached to the discontinuous Markovian process[18], a transition intensity (A,)
could be defined. In this approach, A is assumed to be a material parameter which in addition to
being a function of the crack position 'r', should explicitly depend on both the initial elapsed
cycles i and the incremental duration Ai. The propagation process thus becomes time-
inhomogeneous. This characteristic is a departure from the works of Ghonem and Provan[14]
and Kozin and Bogdanoff[16].

The probability equation was then derived and can be written as:

In P,(i) = B(eKI - eA'i) ; i> 1 1 (I)

=0 , i <1

where i is the number of cycles. B and K are crack-length and stress dependent variables, Pi) is
the probability of the crack being at a state 'r" on the fracture surface after i cycles elapse and
to is the minimum number of cycles required for the crack to advance from one position on the
fracture surface to the next and is also crack-length and stress dependent.

This derivation was made by defining the transition intensity A, and the Incubation time 10
in the following form.

BB eK'  
(2)

K

/ C,[(r - I)" - r " ]  (3)

where 14)

B = C, r"' (5)

K = C, r"

and C. C.. C. ni. n. and n, arc material, applied stress and enironment dependent parameters,.
These functions (eqs 2 and 3) were veritied with the aailable crack growth scatter data based on
the works of Virkler et al.[19] and Yang ct al.[6]



Constant-probability crack growth curves 3

As can be seen, identification of the six constants is sufficient to define eq. (1) at any crack
position so as to calculate the associated number of cycles elapsed for any probability (P,(i)) value.
Carrying out this operation for a given probability value at all the crack states in a cumulative
manner, will generate a crack-position versus number-of-cycles curve representing the probability
with which a crack spends a certain number of cycles at any state.

Here, one should observe that the constants in these mathematical functions can be calculated
by considering the crack growth curve obtained by using a continuum equation as being the,.
P,(i) = 0,5 curve. This can be done numerically, and the crack growth scatter at any crack length
and at any fatigae load can be defined without the need to perform large number of fatigue tests.
As mentioned before, the results of the model, when applied to Al 2024-T3 that was
subjected to load cycles of constant amplitude, were in agreement with those experimentally
obtained with the average error in the theoretical curves estimated to be 5%.

In order for the model to have a wider scope of application, it has to be substantiated for
different loading conditions and for different materials. The first step in that direction is the
verification of the model for different loading conditions on the same polycrystalline material. The
experimental set-up and procedure used for this purpose are described in the next section.

DESCRIPTION OF THE EXPERIMENTAL SET-UP

Tests were conducted on Aluminium 7075-T'6 alloy and crack-length versus number of cycles
data were collected at three different stress levels. Each level was tested by using 60 identical
specimens to establish the degree of crack-length scatter during propagation.

A rectangular specimen (320 mm x 101 mm) with a thickness of 3.175 mm and a center-
cracked tension geometry was used throughout the test program. The direction of the center-crack
chosen was perpendicular to the rolling direction of the sheet from which the specimens were cut
as shown in Fig. I. The dimensions of the specimen and the crack initiating notch are based on
the ASTM E647 recommendations and are shown in Figs 2 and 3 respectively. The specimen ends
were fixed to the test system by flat end grips whose dimensions are also based on the ASTM
E647 recommendations.

A study was carried out to compare the available crack-length measuring techniques namely,

(a) The Photographic Technique,
(b) The Drop Potential Method.
(c) The Mechanical Method,
(d) The Electrical Technique,
(e) The Acoustic Method.
(f) The Ultrasonic Method and
(g) The Visual Method.

The results of this study. based on refs [20, 21 and 22] are detailed in ref. [23]. The conclusion
was that the method of photographing the crack during propagation was the one most suited for
the present program. since it is capable of tracing the growth of one point along the crack-front
as opposed to a technique that measures the average position of the crack front.

The photographic technique used in this study depends on the reproduction of a sharp image
of the deformed material along the flanks of the crack to make it possible to locate the crack-tip
image and, consequently, to determine the crack-length with an acceptable degree of resolution.
Since it is certain that in ductile materials, a sizable plastically deformed zone accompanies the
crack during its propagation. especially in plane stress applications isee Fig. 4). this zone can be
utilized as an accurate crack-length indicator. An example of this deformed zone is shown in Fig.
5 It can be seen that the interface between the two fracture surfaces (the crack) is not present
along with this image. As the crack :ncreases in length. leading to a higher crack opening
displacement. the separation of the fracture surfaces becomes visible as a dark line within the
deformed zone. This is shown in Fig. 6.

The testing configuration included a camera and a continuous lieht source positioned on one
side of the specimen. The camera was triggered by an electrical pulse sent by a microcomputer
that kept track of the elapsed number of cycles. Also, a number of shutter speeds, aperture settings.
devcloping solutions, processing times and film types were experimented with to achieve the best
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0 0 0 126.4 (1)

320.67 (12 5/6)

THICKNESS 3.175 (1/8)

160.33 (6 5/16)

00
2S.4 (1)

0.326 (3/8) DIA

6 H LES 25.4 (1) 25.4 (1)

ALL DIMENSIONS IN MM (INCHES)

Fig. 2. Test specimen in the present study.

reproduction of this shear zone, these parameters are fully described in ref. [23].
A transmitted-light microscope equipped with a horizontal travelling table was used to

determine the length of the image of the plastically deformed zone. The measurements were made
by a digital micrometer having a resolution of I um and transferred, after suitable interfacing, to
a microcomputer for acquisition and subsequent analysis (see Fig. 7).

The error in these measurements was determined by comparing an actual crack-length,
measured directly on the specimen's surface, and the length of its corresponding shear zone. This
comparison, which was made in the cases of I x and 2 x magnifications (see in Table 1 (indicated
that the errors associated with the 2 x magnification, which was adopted throughout the test
program. were lower. The region of interest used for recording the shear zone was limited to the
central 28 mm on the 36 mm frame. Lsing a 2 x magnification. this meant that a maximum of
14 mm of crack growth was photographed in any test.

All the 180 tests carried out in this study were performed on a closed loop. servo-hydraulic
Material Test System ITS 880) capable of controlling loads within 0.2"%.

Based on ASTM E647 recommendations, the initial crack-length, a, wa,; chosen t- he
100*) mm. however, the crack-lengths were recorded from a length of 9.00 mm onwards. The final
crack-length (a,) for the purposes ot this test program was limited to 23 mm measured from the
center line of the test specimen. The loading parameters were then selected so that the crack
transition from the normal mode to the shear mode could not occur before the crack reached this
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specified length, i.e. 23 mm. This condition was imposed on the loading parameters in order to
avoid the problem of defining the crack-length in the shear mode.

Tests were executed at three different stress ratios R; R = Pmin/Pmax, where Pri is the minimum
load level and Pmax is the maximum load level. The loading sequence for fatigue pre-cracking and
the three test load conditions are detailed in Tables 2 and 3, respectively. A frequency of 10 Hz
and a ramp waveform were selected for the loading cycle.

Figure 8 is an example of the results obtained in this test program showing the progress of
the crack length at different loading cycles for one of the loading conditions.

EXPERIMENTAL RESULTS

As mentioned in the previous section sixty specimens were tested for three stress levels and
crack-length (a) versus number-of-cycles (N); data was recorded from a length of 9 mm to a length
of 23 mm. It may be recalled that the initial crack-length chosen for this test program was 10 mm
and not 9 mm. Data between 9 mm and 10 mm will be used for future work on short crack.
behaviour and the comparison between the theoretical probability crack-length versus number of
cycles data. The experimental data will be made from the initial crack-length of 10 mm onwards.
Crack-growth data (a vs N) for the three stress conditions is shown in Figs 9-11.

The next step in the analysis is the selection of the width-of-crack state for producing
experimental data suitable for comparison with that generated by the mathematical model [15].
As can be seen from Table 1, the maximum error between the shear zone recorded on film and
the crack-length measured from the specimen was estimated to be 0.163 mm. Using a conservative
approach, the maximum error was assumed to be 0.2 mm and this was considered to bc thc state
width.

2a

a

4.762 (3/161 dia.

DRILLED

- 9.625 (3

7.144 (9/32) 2.31(3/32) il

14.288 (9/16)

Scale 5:1

All Dimensions in MM (inches)

F-ig I ( rack nihling notch
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Table 1. Comparison of the actual crack-length with the length measured from the film (all dimensions in mini

Measured value Magnification Corrected Actual Error
(M) (M) (C) (A) (A-C)

(C = Ma/m)

4.882 1.058 4.612 4.831 0.218
8.047 1.045 7.700 7.755 0.055

11.624 1.045 11.123 11.206 0.083
18.855 1.045 18.043 18.082 0.039

8.208 2.000 4.104 4.202 0.098
17.028 2.000 8.514 8.677 0.163
15.950 2.000 7.975 8.042 0.067
17.692 2.000 8.846 8.924 0.078
19.841 2.000 9.920 9.956 0.035
23.023 2.000 11.501 11.592 0.090
26.161 2.000 13.080 13.153 0.072
29.803 2.000 14.901 15.018 0.116
31.623 2.000 15.811 15.892 0.081

Table 2. Loading sequence for fatigue pre-cracking (all loads in kN)

Load level till Load level till
crack was generated crack reached 7.5mm

(20 Hz) (20 Hz)
Test P P AP P,=* PmP

Condition

1 25.95 8.30 17.65 ?6.55 13.55 13.00
II 29.30 7.70 2160 24.80 10.65 14.15

1II 26.30 7.70 18.60 21.50 7.30 14.20

Table 3. Test load conditions (all loads in kN)

Test load level
(10 Hz)

Test A
Condition

1 22.79 13.68 9,11 0.6
1[ 22.25 11.13 11.12 05
I1 15 19 6.08 911 0.4

Shear Zone

~Plastic Zone

(A)

Plastic Zone
converted toShear Zone

(B)

(C)

I ih! 4 Ionc of pi iitc dcformation in the ', initl Or the I,1itlc .LrckJ '11
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I. (rack length = 9.495 mm 2. Crack length = 10.498 mm
Number of cycles 6380 Number of cycles = 15510
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Fig. 7. Schematic of the camera-triggering and the crack-length measuring circuits.
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Fig, 9 Crack-length vs number of cycles data from 60 specimens for Test Condition I.

For a statc width of 0.2 mm, the zone between 10 and 10.2 mm corresponded to an initial
crack state (r,) of 51 and the zone between 22.8 and 23 mm to a final crack state (r,) of 11 5.
leading to a total of 65 crack states. Similar to the approach discussed in ref. [15], the number
of cycles spent by a crack in each of these 65 states was calculated by interpolation of the a vs N
data. Thereupon, for all the stress levels, the interpolated values for each state in each of the sixty
specimens was arranged in an ascending order. The lowest number of cycles was assigned a
probability of:

= I - (x60) x =
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Fig. 10. Crack-length vs number of cycles data from 60 specimens for Test Condition 11.
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and so on up until the highest number of cycles whose corresponding probability value was:

P,(i) = I - (x'60) x = 60.

A probability range of 0.9-0.1 was selected for comparison of the experimental and the
theoretical data. The curves obtained experimentally are plotted in Figs 12-14 with the probability
values having decrements of 0.1.

In these figures it is observed that the widest scatter band is associated with the test condition
that produced the smallest mean crack-growth rate, Test Condition Il, while the narrowest scatter
band is associated with the Test Condition 1I in which the mean crack growth rate is the highest.
This is due to the fact that when loads are high, the influence of the microstructure on crack
propagation is diminished so that the degree of scatter of the a vs N sample curves, in relation to
the mean growth curve, tends to be limited. Similar observations were made by Yang et aL.[7]
and this is perceptible in Fig. 15.

THEORETICAL RESULTS

Firstly, the continuum growth law to be utilized in the mathematical model was arrived at
by investigating a number of crack growth equations with known material constants which
recognize the effect of the stress ratio. Forman's equations[13,24] and the equation derived by
Hardath et a/.[25] fall into this category.

Forman's equation is generally written as:

da C(AK )11(6

dN - (I - R)K - AK (6)

where a is the crack-length, N is the number of cycles, K is the stress intensity factor range, K, is
the critical stress intensity factor, R is the stress ratio and C and n are material constants.

P=O. 5
24 P=O. I

P=O. 9

22

2 18
(

14

• 'C 1 ) 14 ,1,

N NiMB ( it ( Y(LF% X I)
4

Fig 12 Experimental conNtant-pro1hahihli, crat:k gro.'th cur'c, generated for Test Conditon I
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Fig. 13. Experimental constant-probability crack growth curves generated for Test Condition 11.
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The values of K~, C and n for Aluminium 7075-T6 are listed in ref.[13] as:

Kc= 68 Ksi-in' (74 M Pa-rnt

C = 5 x 10-13 U.S. Customary Units

= 1.63 x 10- 1 SI Units

n =3

and in ref.[24] as:

Kc =40 Ksi-in'(44 MPa-m')

C =2.13 x 10- 1 U.S. Customary Units

=1.60 x 10-18 SI Units

n =3.2 1.

The equation derived by Hardarth et aI.[25] is:

d a (7 )

where Ke(8)

and Kff (s...i - so) ji-r F (9)

s,,,., is the maximum stress, so is the crack opening stress, \/;ra F is the stress intensity parameter
for specimen configuration, K,,. is the maximum stress intensity factor, K, is the fracture parameter
[81 Ksi-in' (89 M Pa-mt)], C and n are material parameters.

*C 3.83 x 10-8 SI Units

n =3.17.

L.
0

X 14

- 0

Z

0

z

10 14 18 22

U CRACK LENGTH. MM

Fig 15 Variation of the scatter range with crack length for the three Test Conditions
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Of the above two laws, the one provided by Forman et al.[13] was selected because it is
based on data obtained from different laboratories as opposed to the equation of Hudson et al.[24]
that was derived after correlation with one set of experimental data. The growth law of Hardarth
et aI.[25] was also not utilized because the present mean experimental growth rate was different
from that predicted by the law, by an order of magnitude for all the three stress levels.

Having defined the continuum growth law and the corresponding material constants, the six
constants C1, C', C3, n1, n, n3 were next calculated by obtaining their converged values using
Newton-Raphson's method.

The six constants for each load condition are:

1 TI III

C, 0.015127 0.010064 0.010105
C, 1.9371 X 10-6 3.4055 x 10- 6 1.9758 x 10- 6

C3  1.5940 x 106 1.0888 x 106 2.3151 x 106
n, 0.8000 0.7957 0.8514
n, 1.4946 1.4991 1.3501
n3 -0.7000 -0.6820 -0.8537

Following the analysis presented in ref. [15] the theoretical probability curves were plotted making
use of these constants, in Figs 16-18.

The percentage error of the number of cycles is plotted in Figs 19-21. The average value off
the absolute errors was found to be 7%, 5% and 8% for the ', II and the III load conditions,
respectively.

A remark is warranted on the six constants that cl-aracterize the crack growth scatter.
Though these constants depend on the load parameters, no attempt has been made to derive an
explicit relationship. In fact, there is no need for an explicit relationship since they are computed
directly from the continuum growth law.

CONCLUSIONS

(1) The mathematical model developed here provides a physical description for fatigue crack
propagation as well as capability of predicting crack growth scatter at different stress levels.
While the model uses the crack growth data from a continuum law as its input, it does not
depend on a specific law. The only requirement is that such a law must be a correct
representation of the mean growth curve. The model has been validated for two aluminium
alloys Al 2024-T3 and Al 7075-T6 subjected to four different stress levels and is in the process
of being applied to steel and titanium alloys.

(21 The scatter data recorded for the second load condition (AP = 11.12 kN, Pra, = 22.25 kN)
of the experimental program has been observed to be the least widespread when compared
with that obtained from other load conditions with lower values of AP. This can be attributed
to the following phenomenon. The crack transition from a specific state is governed by a
critical threshold energy at the crack tip. When such a threshold is satisfied in one cycle or
an accumulation of several cycles, depending on the load condition and crack-geometry, the
crack tip can then advance from its present state to the following one. Hence for larger loads
and longer crack-lengths, the probability that this propagation threshold is satisfied increases
rapidly with the number of elapsed load cycles while, for smaller loads and shorter crack-
lengths. the probability of discrete crack growth advancement increases gradually. In this
hypothesis the degree of scatter in achieving the required threshold energy reflects on the
degree of scatter of crack growth. Fractographic analysis of fracture surfaces shows that. at
the same crack-length. more striations per unit distance are present along the fracture surface
of specimens subjected to a large load level (Test Condition II. see Fig. 22b) than in the
specimens subjected to a lower load level (the Test Conditions I and Il. see Figs 22a and
22cl. It is known that ductile fracture striations are formed due to a change in the orientation
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Fig. 16. Theoretical constant-probability crack growth curves generated for Test Condition 1.
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Fig. 18. Theoretical constant-probability crack growth curves generated for Test Condition III.
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of the fracture surface along a specific slip plane[26, 27]. Therefore, a denser striation pattern
is observed at loading conditions associated with higher growth rates because numerous
orientation changes take place in a unit distance of the fracture surface. It follows that the
energy required for these changes is achieved more frequently under these conditions. Using
this analogy at a macroscopic level, it can be said that the crack tip propagation threshold
is also achieved more often. These observations may act as another factor that substantiate
the fact that larger loading conditions result in a smaller degree of crack-growth scatter.

The changes in the orientation of the fracture surface along a specific slip-plane are
reflected as the waviness of the crack path on the specimen surface. This is shown in Figs
23(a) and (b). In view of the explanation given previously, increased waviness of the crack
path (measured in terms of the horizontal distance required for the crack propagation direction
to change) is related to increase in the externally applied load levels and thus the degree of
crack growth scatter at a particular load level could be related to the wavines of the crack
path. Quantification of this dependence has not been attempted here.

The phenomenon of crack-tip branching was also observed. Typical examples are shown
in Fig. 24(a) and (b). While the existence of branching certainly contributes to the degree of
crack growth scatter due to random loss of propagation energy at the crack tip, the extent
of this contribution is not known. Both the effect of the waviness and that of the crack-tip
branching on the degree of crack growth scatter are under study by the authors.

(3) The use of the present model is directed towards two applications. The first is the constant
amplitude loading which, while representing a simple load spectrum, does occur in practice:
e.g. pressurization cycles in transport aircraft cabins, rotating bending stresses in generators,
thermal stress cycles in pressure vessels. This application has been examined in this paper.
The second application is the variable amplitude loading which could be a two-step load
sequence now-high, high-low) or a spectrum of random loads. Variable amplitude loading is.
however, a complex problem due to the fact that the crack tip damage per cycle under such
loading is not only controlled by the stress amplitude of the current cycle, but also by the
preceding load history. It is generally agreed[28-30] that this dependence is only transient
in nature and should not exist after a certain duration of cycling.

Reflecting this concept on the fundamentals of the constant-probability crack growth
model, one observes two areas where modifications can be made to account for the history
dependence of the crack growth process due to load changes. The first, is the assignment of
appropriate mathematical functions for the variables B, K and 1r to take this phenomenon
into consideration. The Markovian approach in the model is not violated because even though
the crack tip conditions depend on the loading history, the propagation process is affected
only by the present crack tip conditions. On the basis of the existing works on variable
amplitude loading, it can be said that the mathematical functions cannot be arrived at by
simple superimposition. However, quantification of the crack growth rates for variable
amplitudes, even in the deterministic sense has not been accomplished so far. Only if that is
achieved, will modifications for B, K and l0 be possible.

The other area where modification must be made is the consideration of initial crack-
length (a,). In the present model, a0 was a constant as a result of an imposed experimental
condition. Thus, the model provides a distribution of the number of cycles required for
a crack to reach a specified discrete state from a,. No attempt has been made to consider
an initial crack-length distribution and the manner in, which it will affect the constant
probability curves. Attempts to interpret the constant-probability growth curves in terms of
a distribution of crack states after a specified number of cycles have elapsed from the instant
the crack reached a, were also not made. Only this type of a distribution is useful for xariable-
amplitude loading application because the history of the fracture process is described in terms
of the number of cycles The recognition of this distribution is an important step since it
iepiesents the initial crack-length configuration which is a necessary boundary condition for
the new load spectrum.

4,0y. ,, -hdi+m<on This %ork w supported hy the I" S Air Force (fice of Scientific Research under ( ontra. .Nt. )SR
85 'ori2 i,, niiorcd h., Dr (j, larito. and Dr N Pagano



Constant-probability crack growth curves 25

REFERENCES

[I] D W Hoeppner and W. E. Krupp, Prediction of component life by application of fatigue crack growth knowledge.
Engng Fracture Mech. 6. 47-70 (1974).

[2] Karl-He: :z Schwalbe, Comparison of several fatigue crack propagation laws with experimental results. Engng Fracture
Ateth 6, 325- 341 11974).

[3] S. Chand and S. B. L. Garg. Propagation under constant amplitude loading, Engng Fracture Mech. 21, 1-30 (1985).
[4) S. C. Saunders. On the probabilistic determination of scatter factors using Miner's rule in fatigue life studies. ASTM

STP 511.
[5] W. J. Plumbndge. Review: fatigue crack propagation in metallic and polymeric materials. J. Mater. Sci. 7 (1972).
[6] J. N Yang, R. C. Donath and G. C. Salivar. Statistical fatigue crack propagation of IN 100 at elevated temperatures,

AS AE Int. Conf. on Advances in Life Prediction Methods. Albany, New York (1983).
[7] J. N. Yang and R. C. Donath, Statistics of crack growth of a super-alloy under sustained load. J. Engng Mater.

Technol 106, 79-83 (1984).
(8] S. Tanaka, M. Ichikawa and S. Akita, Variability of m and C in fatigue crack propagation law da/dN - C(AK)r.

Int. J. Fracture 17, R 121-124 (1981).
[9] T. R. Gurney, Fatigue of Welded Structures. Cambridge University Press (1979).

[10] D. F. Ostergaard and B. M. Hillberry, Characteristic of the variability in fatigue crack propagation data, Probabilistic
Fracture Mechanics and Methods: Applications for structural design and maintenance, ASTM STP 798, 97-115 (1983).

[iI] B. R. Ellingwood, Probabilistic Assessment of low cycle fatigue behaviour of structural welds, . Press. Vess. Technol.
26-29 (February 1976).

L12] P. Paris and F. Erdogan, A critical analysis of crack propagation law, J. bas. Engng 528-534 (December 1963).
[13] R. G. Forman, V. E. Kearney and R. M. Engle, Numerical analysis of crack propagation in cyclic loaded structures,

J. Bas. Engng 459-464 (Septerr.,er 1967).
[14] H. Ghonem and J. W. Provan, Micromechanics theory of fatigue crack initiation and propagation, Engng Fracture

Mech, 13, 963-977 (1980).
[15] H. Ghonem and S. Dore. Probabilistic description of fatigue crack propagation in polycrystalline solids. Engng

Fracture Mech. 21, 1151-1168 (1985).
[16] J. L. Bogdanoff and F. Kozin. Probabilistic Models of Cumulative Damage. John Wiley & Sons (1985).
[17] S. Aoki and M. Sakata, Statistical approach to delayed fracture of brittle materials, Int. i. Fracture 16, 454-468

(1980).
[18] A. T. Bharucha-Reid, Elements of the theory of Markov processes and its applications. McGraw-Hill (1960).
[19] D. A. Virkler. B. M. Hillberry and P. K. Goel, The statistical nature of fatigue crack propagation, J. Engng Mater.

Technol. 101, 148-153 (1979).
[20] N. E. Frost, K. J. Marsh and L. P. Pook. Metal fatigue, Vol. 225. Clarendon Press, Oxford (1974).
[21] C. J. Beevers (Ed ). Advances in Crack Length Measurement Techniques. Chameleon Press, London, 1982.
[22] R. B. Thompson and D. 0. Thompson, Ultrasonics in Nondestructive Evaluation. Proc. IEEE, 1716-1755 (December

19851.
[23] H, Ghonem and S. Dore. Probabilistic description of fatigue crack growth in aluminium alloys, AFOSR-83-0322.

lApril 19:
[24] C M Hudson and J. T. Scardina, Effect of stress ratio on fatigue crack growth in 7075--T6 aluminium alloy sheet.

Ening Fracture Alech. 1, 429-446 (1969).
[25] H F. Hardarth. J. C. Newman. Jr, W. Elber and C. C. Poe, Jr., Recent developments in analysis of crack propagation

and fracture of practical materials. NASA TM-78766 (June 19781.
[26] R. W Hertzberg and P. C. Paris, Application of electron fractography and fracture mechanics to fatigue crack

propagation. Proc. First mIt Conf Fracture, Sendai. Japan (1965).
[27] R. M N. Pelloux and J. C. McMillan, Analysis of fracture surfaces by electron microscopy. Proc. First Int. Conf.

Fracture. Sendai. Japan (19651.
[28] J. Schij.e. Fatigue crack growth under spectrum loads, ASTM STP 595, 3-23 (1976).
[29] W Elber. Damage tolerance in aircraft structures. ASTM STP 486, 230--242 (1971).
[30] R Sunder. A mathematical model of fatigue crack propagation under variable amplitude loading. Engng Fracture

fech 12. 155 165 11979)
[31] H L. Ealds and R J H Wanhill. Fracture Mechanics, Vol. 176. Edward Arnold, London (1984).

(Received 29 Mai 1986)



APPENDIX C

CONSTANT-PROBABILITY CRACK GROWTH CURVES

128



Enguswmg Frrmac. Mocies Vol. 30. No. 5. pp. 685-699. 1988 0013-7944/U S3.00+.00
Prnted in Great Brntan. P-etma Pr m C

CONSTANT-PROBABILITY CRACK
GROWTH CURVES

H. GHONEM
Department of Mechanical Engineering and Applied Mechanics, University of Rhode Island,

Kingston, RI 02881, U.S.A.

Abstract-This paper details a stochastic, time-inhomogeneous model that serves as a theoreti-
cal basis for the prediction of crack growth and its variability under constant-amplitude loading.
Crack evolution is described as a set of constant probability curves, each of whose points possess
equal probability of advancing from one position to another forward position. This probability is
governed by a transition intensity parameter for which two mathematical interpretations are
examined. A simplified crack growth rate equation, employing one of the definitions, is derived
and applied to AI 7075-T6 material for different loading conditions. Results of this application
are compared with those experimentally obtained.

INTRODUCTION

THE WORK of Ghonem et al[f, 2] describes a [Orobabilistic crack growth model based on the
assumption that fracture history can be established by employing a particular discontinuous
Markovian process which takes into account the fundamental aspects of the crack growth
mechanism. This approach leads to the description of the sample curve of the crack growth
process in terms of a constant-probability criterion. When considering that the crack growth
curve given by any continuum crack growth model coincides with the median growth curve, the
probabilistic model would then be sufficient to describe the evolution of the crack length and
associated scatter at any stress level[3,4]. The present paper is an attempt to extend the
concepts of the model by including a different definition for the transition intensity probability of
the growth process. This will lead to the derivation of a simple and explicit probabilistic crack
growth rate equation similar in structure to the Paris-Erdogan equation.

The first part of the paper focuses on the constant probability crack growth curve concept
and its model derivation, while the second part will deal with the application of the proposed law.

MODEL

The basic model is based on the assumpion the crack front in the crack propagation stage, as
shown in Fig. 1, can be approximated by a large number M of arbitrarily chosen points a,
a = 1 ..... ,. Each of these points in terms of the theory of probability, identifies a statistical
"trial" or "experiment" conducted under identical conditions. The fracture state of the ath trial
at cycle "i" is given by the crack length or random variable 'a(xi, x 2, x 3) whose evolution with
time shall then be established.

I DIRCTION OF
CRACK PROPAGATION

Fig I Schematic of crack front positions along the fracture surface.

685
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The following observations can be made regarding *ad:
1. The evolution of *a, in the x1, x2 and x3 directions are statistically independent of each

other.
2. The statistical evolution of 'ai(xi) is different from those of *ai(X) and ai(x 3) in that the

former consistently increases while the latter may be described as a type of random-walk
phenomenon.

3. For an external load applied in the xt direction, the crack evolution in the x2 and x3

directions are orders of a lesser magnitude than that in the x, direction.
On the basis of these observations this model is limited to the evolution of 'ai(xi) by assuming

that the crack growth distributions of 'a,(X2) and 'a(x 3) can be described by Dirac-Delta
functions. So, *a will hereafter be referred to as ai.

Due to the built-in limitations of all experimental techniques in crack measurement, the
observed value of a, can only be specified within a range of:

x < a1 < x +Ax,

where Ax is the experimental error and x is the crack position calculated as (see Fig. 2):

x=rAx; ro<r<rf. (1)

Here "r" identifies the observable zone or state along the fracture surface; ro is the initial
propagation state, ry is the state just prior to catastrophic failure of the specimen and
ri, r2,. .. , r1_1 are the intermediate zones, all zones having the same width.

Given that the crack is in state r, then after i cycles from the instant of reaching r, one of

r 6

_-F
AX

22

x 1 REFERENCE

.aic p a. t LINE

Fig. 2, Schematic of the proposed fatigue crack propagation along the fracture surface states.
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two events will occur. Either ad will remain in state r (event 'E) or a will not be in state r (event
E). The following points should now be noted.

(a) The crack propagation process is irreversible (i.e. there is no rewelding of crack
surfaces). Hence the crack, if it is not in state r after i cycles, must exist in a state greater than r

(b) Since it is not possible for the crack to propagate from one state to another state withoui
penetrating the adjacent one, the crack can be identified by the number of cycles (i) required tc
advance from a given state to the immediately following state.

Based on these observations, events 'E and 'Ej can be seen as elements of a measurable
space (fl) (see ref. [3]) and the following definition of the probability measure of a becomes
possible. At any fatigue cycle i, the probability that a, is in state r, i.e. the probability of 'E, is
defined as:

P{a, E rE, = P{x < ai < x +x4, (2)

i.e.

P('E,) = P,(i). (3)

Therefore, the probability of ad not falling within r, i.e. the probability of 'E, is,

P('E) = 1 - P,(i). (4)

It can be seen that, P,(i) should continuously decrease as the number of cycles increases. Before
proceeding further to identify the parameters that define P,(i), it is necessary to make these
comments.

Under conditions of constant amplitude loading, where no overloading effects are con-
sidered, the growth of a crack from a particular state depends only on its present mechanical and
microstructural details. More specifically, the probability of ai propagating from state r to r + I
in the cycle interval (i, i + 6i) depends on the event ('E,) and is independent of the events prior to
i, ('Ej, j < i). To elaborate, let (','E) be the event of a, jumping to (r+ 1) from r in the interval
(i, i+A i). This represents a future event if (rE,) is an event in the present. Clearly, the future
event is conditional on the occurrence of the present event. Given that the present has occurred,
the probability of the future is not affected by the probability of the occurrence of the past ('E,
j < i). Also, the occurrence of ('E,) precludes the occurrence of the (SEj, j < i, s > r) due to the
irreversible nature of the crack growth process.

The above feature is similar to that of a pure birth Markovian process in which the future is
determined only by thc present and not by the past, and in which the discrete space variable
never decreases in magnitude with increase of time. This analogy helps to define a transition
probability that is also a Markovian property and introduce the condition probability function
that governs the crack growth process as:

P+' E /'E, ..... FE, ..... 'Eo, P{+i EAi/i'E

= P,,(i; ii, (5)

where P,,(i) is the transition probability linking the probability measures of two consecutive
states "r' and "'" 0 = r+ 1) along the fracture surface and "/" denotes the conditional
probability. This property, together with the evolution of aj within the two event sample space
(fl). describes a discrete space continuous time Markov process.

Since the analogy to the Markovian process has been shown, the criteria attached to this
process can be assumed to be valid for the crack growth as well.

1. The probability that a, propagating to a state different from r in Ai cycles, where Ai is very
small, after i cycles elapse in state r is:

P,(Ai) = P{'EAi/'E.} + O(Ai),

=A,Ai+0(Ai); t=r+1. (6)
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Here, A, is a positive variable indicating the probability transition rate. It describes the transition
rate from state r to r + 1 in i cycles.

In this analysis, A, is assumed to be a material parameter which in addition to being a
function of crack position r, should depend explicitly on both initial cycle i, and duration Ai. The
propagation process thus becomes time-inhomogeneous.

2. The corresponding probability that a will be in state r during the.cycle interval Ai is:

P,(W) = P{'E,/'E} + O(Ai)

= (I - AAi) + O(Ai). (7)

3. The probability that a, is in a state different from r + I is:

P,,(Ai) = P{'E&,IE }

= O(Ai); tr+ 1. (8)

The time interval Ai is so small that the probability of advancing from r to a state greater than
r + 1 is almost zero. By definition, 0(Ai) is such that,

lim (A i) = 0.,,i-o A

Now, let

A = 'Ei and B = Ew.

Then

Af nB = rEi,,,.

Since

P(Af B) = P(BIA) P(A).

Therefore

pl',& , = P{'EA, 1I'E}" P{E,}. (9)

Substituting eqs (6), (7) and (8) in (9) we get,

P{'E,.,A} = (1 - A,Ai)• P{'E,} + 0(Ai), (10)

which can be written as

P,(i + Ai) = (I - Ai).- P,(i) + 0(Ai). 0(1l)

By transposing the term P,(i), dividing by Ai and passing to the limit Ai- 0, eq. (11) becomes

dP,(i) =A,P,(i). (12)
di

The solution of this equation is:

In P,(i) =-f A, di + Li, (13)

where L, is a constant.
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This equation describes the crack growth probability from state r, after i cycles elapse, in
terms of the constant L, and the transition rate A, which is discussed below.

The parameter A, was introduced in this model as the transition intensity by which a,
propagates from one state to the next. Adopting the notion that the crack growth process is a
discrete one, the crack transition from a specific state can be viewed as being governed by a
critical threshold energy at the crack tip. When such a threshold (which is environmental,
material, stress and crack-length dependent) is satisfied by cyclic energy accumulation, a crack
tip transition can be said to occur. Therefore the larger the cycle duration associated with the
crack in a specifc state, the grea!er the probability that the propagation threshold :, sat: fied and
the greater the probability that the crack advances to the following state.

The transition intensity, A,, can be assumed to have several physical interpretations,
however, the primary concern at this point is whether A, is a material property present only when
there is application of cyclic loads or whether it exists even when there is no cycling.

If A, is a property that owes its existence to cyclic loading, then it could represent a
dislocation accumulation rate, a microvoid growth rate, a ductility exhaustion rate or a rate at
which any physical phenomenon occurs in the grain structure of a polycrystalline material to aid
the propagation of a crack. In that case, the magnitude of A, should be zero at any instant there is
no cycling. Specifically, its magnitude should be equal to zero at i = 0, the instant at which the
load cycling is about to begin, after the crack has reached a particular state, r. Keeping in mind
the fact that A, should monotonically increase with i, the following expression for A, can then be
chosen.

A,(i) = L(r)ia( '), (14)

where L(r) and a(r) are functions of the crack state.
If, on ,he other hand, A, is a property present even when there is no cyclic loading, the

physical analogy for A, would be completely different. A, would then represent a dislocation
density in the microstructure or a microvoid density in the microstructure of a material. Thus
while the property A, does increase in magnitude during cycling, it does not cease to exist when
the cycling is absent. Hence, from this point of view, A, should have a value corresponding to
i = 0, the instant at which the cycling is about to begin after the crack has reached a specified
state, r. The following expression could then be considered.

A, = L(r) e''. (15)

From a purely mathematical point of view expression (15) was first selected to be utilized in the
present model. By substituting eq. (15) in (13), it yields:

In P,(i) = -B e c + LI, (16)

where B = LIC.
The upper and lower limits of P,(i) in the above equation are:

I - P,(i) - 0. (17)

The form of eq. (15) suggests that J has a lower boundary that satisfies the upper limit condition
of P,(). Equation (16) thus becomes:

nP,(i) = B(e c lI -e c ') i> J0
(18)

= 0 i -_o

where the parameters B. C and Io, the incubation time, are found to be:

B = Ca",; (19

C= C 2a",2  (20)
erg iO:5-1
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and

10 = C3[a,- 1 - a,"]  (21)

C1, C2, C,, ni, n2 and n3 are material-, stress- and environment-dependent parameters.
The lication of the above eq. (18) to different steel and aluminum alloys is detailed in

ref. [3].
In this paper the interpretation concerning A,, as given in eq. (14), will be examined. By

substituting this equation in (13) and setting the upper and lower limits of P,(i) to:

I -_ P(0) > 0,

one can arrive at the following solution

Ai = A(-ln P,(i))1, (22)

where

A--I+ a and 19-.

A and B are considered here to be material-, stress- and crack-position dependent.
The above equation identifies the duration of fatigue cycles required for a crack at position r

to propagate with a specific constant probability P,(i), to a position r+ 1 along the fracture
surface. By calculating such durations for states r, to rf- 1 , the history of the entire constant-
probability crack growth curve can be obtained. If an assumption is made that the crack growth
curve generated by a continuum model coincides with the median growth curve, i.e., the
P,(i) = 0.5 curve, parameters A and P can be determined and eq. (22) becomes fully defined for
a particular material and a particular constant amplitude stress condition. The work described
below explains the procedure for determining the expressions of both A and P.

Following the approach detailed in ref. [3], work of Virckler et al.[5], which combines crack
growth data of 68 replicate tests of A12024-T3, shown in Fig. 3(a) was arranged in 9 constant
probability crack growth curves as shown in Fig. 3(b). Data points representing cycle intervals
corresponding to similar discrete crack propositions along three different constant-probability
curves; P,(i) = 0.05, 0.5 and 0.95, were used as input to eq. (22) to determined the parameters A
and )9. Using curve regression analysis parameter 0 was found to be constant for all state
positions with a value of 0.166. The parameter A varied as function of r in a pattern shown in
Fig. 3 which is fitted into the form:

A = 1.5 X 10((r- 1r- r-). (23)

Similarly. data of Yang et al.[6], Fig.4, which consist of the distribution of crack size as function
of load cycles for IN-100 tested for two different load conditions, were used to obtain the
expressions for A and P. These expressions were obtained as:

Test condition I

A = 4.3 X 10((r- 1)- 07 0 - r' 7).
(24)

= 0.155, (average)

Test condition 11

A = 4.06 x 106((r- 1)- ' a - r- 14).
(25)

/3 = 0.266. (average)
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Fig. 3(a). Sample curves of data set from Virckler's study.
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Fig. 3(b). Experimental constant-probability crack growth curves generated from the data in Fig. 3(a);
,Ix = 0.2 mm.

By observing the forms of A and P, as expressed in eq. 23-25, obtained from two different types
of alloys, one can conclude that, while )3 seems to depend mainly on the material and stress
condition, a general form of A depends on the crack position and can be written as:

A = C,((r- 1)"1- r),

where C1 and y are material- and stress-dependent parameters. Therefore, one can write eq. (2 1)
as:

Ai = Cl((r- 1)r- - r)-) n P(0))2

= C-' [Axlr - 0ly - Ax 'r']l-In P)-8 (26)

-- IIAI,
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Fig. 4. Experimental constant-probability growth curves for (a) Test condition I and (b) Test
condition 11(6].

since the crack length a, can be written as a, = Ax • ., thus, eq. (26) becomes

Ai = C2(a.-1 - a,)(-ln P)O, (27)

where C2 -= C,/Ax 7 . One should remember here that Ai is the number of cycles counted from
the instant the crack tip reaches state r and P is the probability that the crack will not propagate
from state r to the following state within Ai cycles. For the same value of P,(i), i.e. operating on a
single crack growth curve, eq. (27) can be manipulated as follows:

Ail = it -0 = C2(ao*- a ')(-In p)O,

where ao is a constant that represents the initial crack length.

Ai 2  i2 - il = C 2(aT- a,)(-In P)?

Ai,= 4
-i - i, = C2(a,-, - a ')(- In P)O.

By summing Ail + Ai2 +• + Ai, one obtains

i,=C2(a 0'- a,) (-In P)O.
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Differentiating both ends w.r.t. i; thus:

I = C2-7a.7-1 La) )(-In P)O.

2 a. di

This equation can be rearranged as:

d C 3a 8 (-ln P)-O, (28)di

where

-1
C3 =-:L and 8 =1 -Y.

C2 Y

By multiplying and dividing eq. (28) with Aou2 a; where Aao is the stress range, one can obtain:

da

= CAo,28 r~a(-ln P)-, (29)

where C = C 3/Ao- 28rr.

Equation (29) could then be written as:

da
Ci(AK)(-In P)-P (30)

which represents a crack growth rate equation for a crack progressing from one state to the
following state along the fracture surface with a constant probability P.

As mentioned before a basic assumption in the work of ref. [2] is that the median of the
constant probability crack growth equation, i.e., the curve with P,(i) = 0.5, can be described
using a continuum crack growth law. By invoking this assumption the validity of eq. (30) could

be examined using results of tests carried out on A17075-T6 specimens (3). In this work the
crack length versus number-of-cycles was obtained for three different stress conditions. Each
condition was tested by using sixty identical center-notched flat specimens (320.67 x 50.8 ,
3.175 mm) resulting in sixty crack-growth curves, each consisting of 2_ , points generated
through the use of an automated photographic technique detailed in ref. [3]. The results of this
study and the correspondirg experimental constant probability crack growth curves are shown in
Figs 5-8. Following an argument discussed in the above mentioned study, Forman's eq. (6) was
selected as a suitable continuum crack-growth law since it recognizes the effect of the stress ratio
R and is well documented for A17075-T6; it is written as

da CAK(3
di (1 - R)(K, - Kn,,)' (31)

where

K, = 74 MPa in
1t 2 ,

C = 1.63 x 10-

m = 3.065.

The results of the comparison of this equation with those experimentally obtained for P,(i) = 0.5
are shown in Fig. 9; they indicated close agreement.

The above equation could now be equated to eq. (30) in which P(i) = 0.5. In this equality
the parameter 6 is set equal to m of Formann equation, i.e., 8 = 3.065. Using an iterative
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numerical technique that employs the Newton-Raphston method, values of C, and 0 for the
three different load conditions were obtained:

Test condition I Test condition I Test condition III

C, 2.64 x 10- 4  1.65 x 10- 4  1.42 x 10- 4

i 0.195 0.203 0.299

The parameters C and 3 were then substituted in eq. (30) to generate, for each load condition,
the entire spectrum of the constant probability crack growth rate curves. These curves were
compared to those experimentally obtained in Fig. 8. Results of this comparison, in the form of
percentage-of-error of number-of-cycles corresponding to a similar crack length, are sum-
marized in Fig. 10. These results show that the error of the model under test conditions 1, I1 and
III are ±2.5%, ±5% and ±8% respectively. This degree of error is similar to that obtained when
A, is expressed by eq. (15), see ref. [3]. Furthermore, a comparison between both the theoretical
and experimental cumulative distribution function for selected crack lengths, at the three
different loading conditions, are shown in Fig. 11; they indicate a very close agreement.
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ERROR 0
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-20 ti l 
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Fi, 10. Error in per cent between constant-probability crack growth curves generated using the

mathematical model and those obtained experimentally in Figs 5-7
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Fig. 11. Cumulative distribution functions for three crack length positions; A = A2 m, B B 5 mm, and

C = 21t mm obtained for the three test conditions in Figs 5-7/.

CONCLUSIONS

This paper has outlined the principle of a stochastic model aimed at describing crack growth
and its variability due to random characteristics of the microstructure of polycrystalline solids.
The model was built by developing an analogy to a discontinuous Markovian process. This
treatment leads to the calculation of the cycle duration required for a point along the crack tip to

advance with a particular probability to a forward state along the fracture surface. This
probability is governed by a transition intensity parameter, A,, which is viewed here as material-
and cycle-dependent. In the absence of a definite physical interpretation of this parameter, it has
been given two mathematical expressions which differ in that one expression, A., possesses a
value when Ai approaches zero, while in the other expression A, becomes zero as Ai--0. The
paper examined the latter c tion which then led to the derivation of a crack growth rate
equation in which a probability term is explicit. Comparison of the results of this equation, when
applied to A17075-T6 for th eresiont loading conditions, indicates agreement with experi-

mental results obtained by the author for the same loading conditions.
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APPENDIX D

Potential Drop Measurement

1. Potential Drop

The crack measurement technique used in this report is the d.c.

electrical potential drop method which is a widcly accepted method

of monitoring crack initiation and growth in controlled lab tests. In

its simplest form it involves passing a constant current through the

specimen and then measuring the electrical potential across the crack

plane- As the crack propagates the resisiance of the specimen, and

hence the potential drop (P.D.) increases due to the reduction in

uncracked cross sectional area of the specimen.

The P.D. technique has many advantages over optical

measurements of crack length. It provides a total measurement

inclusive of crack front curvature, and because it does not require

visual accessibility, tests may conducted in any sealed environment.

The output is continuous which permits automatic data collection and

processing together with a 24 hours usage of testing machine

capacity. The block diagram of our d.c. potential system is illustrated

in Fig. D-1.

In order to obtain a relation of potential and crack length, which is

independent of current and temperature variations, the potential

measurements are modified and compared using the ratio of two

measurement VR, which is expressed as:
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0
Vi-V °

VR =
V 2 -V 1

where V1 and V2 are two potential measurements as shown in Fig D-0 0

andV 1 and V 2 are the null voltage of Vi and V 2 respectively

measured when current is shut off, both of which account for the

thermocouple effects. VR instead of V1 is used here to allow

compensation for temperature, current and material variations with

time.

The crack length in calibration was observed by optical microscope

as shown in Fig. D-3. The relationship between d.c. potential and

crack length for the specimen shown in Fig. D-4 was obtained

through calibration test in which data pairs of crack length and

potential were recorded during crack propagation. The dimension of

the specimen used in this study is shown in Fig. D-5.

2. Computer hardware and software

The control system has constructed around a IBM-PC. Machine

control, data acquisition and storage, and output of results are

affected via a computer interface which includes DASH-16, a

multifunction high speed analog/digital I/O expansion board for the

IBM Personal Computer.

The test machine cyclic load and frequency are controlled through

a 410 Digital Function Generator.

The application software has been written in BASIC and its

operation is summarized in the flow diagram shown in Fig. D-6. The

programs are also attached to this appendix in Fig. D-7.
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D-7 Flow chart of the main program used in the experiment

Start

Clear

Define
Segment
Address

Load DASH-16

Dimension
and
Initialize
DASH-16

Set Function

lnpu1 required data

data

152



From Last Page

Load

Chart

Set Sample
Rate and
Scan Limits

Set Time to
00:00:00

Output
Breakpoint
Voltage to
Fun. Generator

Output
Setpoint
Voltage

Take
Function
Generator
Gate High

Start Test

LNext page

153



Q! ~From last ag

lastr DMAe

70 0 conerion

Set minmax

values on
each channel

154

Start DMA

8 Do A/D
-0 conversions
- Trasnsfer Data

Read converter
Set value for
change

Print out

time and
count

ra-m+65535

154



lFrom last pageI

Count=m+
change+cs
Pchange=change

Transfer data
from memory
to arrays

Reset timel1

155u



omlast

Determine
v~oltaae ratio

Add total current
and previous
voltage ratio

Add previous
count and
current count

cascade arrays
of count and
voltage ratios

I Average previous1
and current
voltaae ratio I

Ueen crak
length from previous1
and current voltage
ratios and calibration
equation

Pn t ou t coun r
and volt

Determin change
in crack length and
count

Netpage

156



From last page

Print out crack
length, voltage ratio
current overstress

Transfer rapid

reading data

aon ages arnd

take average of group
of ten. /

PittPrint to Print to

f ii 2data file31 data fil data file3

Increament K

157



IPrint
current is off
don't overstress

IWrite digital
otput to turn
crrent off

Time3=Timer

Reset channel

delay

80

Surn voltages an

Set channels not
used to zero

Print out nul
voltacie

nex page

158



From last page

Write digital output
to turn current on

90

Pslope=slop~e

Read counter

Read counter
Time3=Timer

Bcount=change
set scan rate for
rapid reading

Do A/D conversios
and transfer data
to memory

Read counter

159

• . .
=counter



[From last page_

Output overstress
voltage to Function
Generator

lccount=change

readings

mI=mll

scan rate to
Onormal reading rate

+

St Fnllton usenetor

correct rapid readingsI

160.. . ..,n I I I



/Promote user
to change normal

or overload voltage

P rmte 
or 

ne

y

sus reue nc,,

Promote userfo /
tnge normal lae

overload voltage

Promote user

to resume

161

. . . .• . i l I I I



40

ead counter
wlunt-change

Kadconer+0

TRe 1outer

1~o 0 10 0

16 2



Output gate low
to Function Generator

[ Print tile names

163



PROGRAM

164



Program for test control

10 'THIS IS THE FINAL VERSION OF THE TEST PROGRAM
20 ' AS OF 6-02-88 AND
50 ' IS STORED AS NEWNUL1l.BAS
100 ' THIS NEWNUL11.BAS IS FOR COLLECTING AND RECORDING THE DATA
FROM
120 ' MTS MACHINE,EXTENSOMETER AND POTENTIONAL DROP
150 '
200'
250 '
300 CLEAR
350 DEF SEG=0
400 SG=256*PEEK(&H511)+PEEK(&H510)
450 SG=SG+49152!/16
500 DEF SEG=SG
550 BLOAD "DASH 16.BIN",0
600'
650 'INITIALIZE PROGRAM
700'
750 DIM DIO%(4),DT%(2000!),CH%(2000!),DAVG(I0),DSUM(10),VOLT(10),BSUM(100)
800 DIM PVR(100),PCOUNT(100)
850 DIO%(0)-832
900 DIO%(1)=2
950 DIO%(2)=1
1000 MD%=0
1050 FLAG%=0
1100 DASH16=0
1150 CALL DASH16 (MD%,DIO%(0),FLAG%)
1200 IF FLAG% <>0 THEN PRINT "INITIALIZATION ERROR #";FLAG% :STOP
1250 ML--O
1300 N=1
1310 ON ERROR GOTO 22000
1350 KEY (5) ON
1400 KEY (6) ON
1450 KEY (2) ON
1470 KEY (9) ON
1500 KEY (10) ON
1550 ON KEY (5) GOSUB 19050
1600 ON KEY (6) GOSUB 17100
1650 ON KEY (2) GOSUB 14900
1670 ON KEY (9) GOSUB 21000
1700 ON KEY (10) GOSUB 18100
1750 CLS:INPUT"NAME FOR NORMAL RATE DATA FILE";F$
1800 INPUT"NAME FOR FIRST RAPID RATE DATA FILE";G$

165



1850 INPUTNAME FOR SECOND RAPID RATE DATA FILE";H$
1900 INPUT"NAME FOR THIRD RAPID RATE DATA FILE";E$
1950 INPUT"STARTING NUMBER OF CYCLES";CS
2000 OPEN F$ FOR APPEND AS #1
2050 OPEN G$ FOR OUTPUT AS #2
2100 OPEN H$ FOR OUTPUT AS #3
2150 OPEN E$ FOR OUTPUT AS #4
2160 METAL$=LEFT$(F$,1)
2170 IF METAL$="T" OR METAL$="t" THEN
C1=-17.12129:C2=-15.72081:C3--9.748079:C4=175.5466:C5=29.25841
2180 IF METAL$="S" OR METAL$ ="s" THEN
C1=-12.41537:C2=-6.551828:C3=13.0006:C4=61.65978:C5-169.0192
2190 PRINT TAB(10)"The coefficients:"
2200 PRINT TAB(10) USING" # .# ";C1,C2,C3
2210 PRINT TAB(10) USING" #.#";C4,C5
2250 INPUT"SETPOINT LOAD AS % OF FULL RANGE";SETPOINT
2300 SET--4095 *(SETPOINT/50)
2350 SET2=SET
2400 INPUT"NORMAL LOAD AS % OF FULL RANGE";NORM
2450 NORM 1--4095*(NORW50)
2500 NORM2=NORM 1
2550 INPUT"OVERLOAD AS % OF FULL RANGE";OVER
2600 OVER 1 -4095*(OVER/50)
2640 NUM= 1:X=20:LL%= I:UL%=5:RATE=5000:CONVER= 1000:RATE2=32000: SEC= 1
2650 PRINT"NUMBER OF OVERLOAD CYCLES";NUM
2700 PRINT"TIME BETWEEN AUTOREADINGS";X
2750 PRINT"LOWER CHANNEL LIMIT";LL%
2800 PRINT"UPPER CHANNEL LIMIT";UL%
2850 PRINT"NORMAL READING RATE";RATE
2900 PRINT"NUMBER OF NORMAL RATE READINGS PER SAMPLE";CONVER
2950 PRINT"RAPID READING RATE";RATE2
3000 PRINT "SECONDS OF RAPID READINGS";SEC
3050 CONVERI=SEC*RATE2
3100 XX=0
3150 K=CONVERI+100
3200 INC=((UL%-LL%)+I)*10
3205 INPUT"HYDRAULICS ON";DUMB
3210 INPUT"FAN ON";DUMB
3215 INPUT"DC POWER SUPPLY DCR40-35A AT 10 AMPS";DUMB
3220 INPUT"CURRENT SWITCH, DC POWER SUPPLY AND OSCILLOSCOPE
ON";DUMB
3225 INPUT"EVENT COUNTER SET TO ZERO FOR A NEW TEST";DUMB
3230 INPUT"TEST MACHINE RANGE SET TO DESIRED NUMBER (10,20,50 OR
100)";DUMB
3250 INPUT "PUSH RETURN TO BEGIN TEST";DUMB$
3260 LPRINT"NORMAL RATE DATA FILE: ";F$
3265 LPRINT"STARTING NUMBER OF CYCLES: ";CS
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3270 LPRINT"FIRST RAPID RATE DATA FILE: ";G$
3275 LPRINT"SECOND RAPID RATE DATA FILE: ";H$
3280 LPRINT"THIRD RAPID RATE DATA FILE: ";E$
3285 LPRINT"SETPOINT LOAD AS % OF FULL RANGE: ";SETPOINT
3290 LPRINT"NORMAL LOAD AS % OF FULL RANGE: ";NORM
3295 LPRINT"OVERLOAD AS % OF FULL RANGE: ";OVER:LPRINT:LPRINT
3300 FOR I=1000 TO 10 STEP -10
3350 SET3=(SET* 10)/I
3400 MD%=15:DIO%(0)=1:DIO%(1)=SET3:FLAG%=X
3450 CALL DASH16 (MD%,DIO%(0),FLAG%)
3500 IF FLAG% <>0 THEN PRINT "ERROR IN D TO A #";FLAG% :STOP
3550 NEXT I
3600
3650
3700 'INITIALIZE COUNTER
3750 '
3800 MD%=I I:DIO%(0)=-I
3850 CALL DASH16 (MD%,DIO%(0),FLAG%)
3900 IF FLAG% <>0 THEN PRINT "COUNTER ERROR #";FLAG% :STOP
3950
4000
4050 'SET SAMPLE RATE
4100 '
4150 SAMPLE RATE= 1,0,0/DIO%(0)*DIO%(1)
4200 DIO%(0)=2
4250 DIO%(1)=500000!/RATE
4300 MD%=17
4350 CALL DASH16 (MD%,DIO%(0),FLAG%)
4400 IF FLAG% <>o0 THEN PRINT "ERROR IN TIMER #";FLAG% :STOP
4450 '
4500
4550 'SET SCAN LIMITS
4600
4650
4700
4750 DIO%(0)=LL%
4800 DIO%(1)=UL%
4850 MD%=I
4900 CALL DASH16 (MD%,DIO%(0),FLAG%)
4950 IF FLAG% <>0 THEN PRINT "ERROR IN SCAN LIMITS #";FLAG% :STOP
5000
5050
5100 ' START AND RUN TEST
5150 '
5200 TIME$="00:00:00"
5220 TIME I =TIMER
5250 MD%=1 5:DIO%(O)--0:DIO%( I)=NORM2:FLAG%=X
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5300 CALL DASH16 (MD%,DIO%(O),FLAG%)
5350 IF FLAG% <>0 THEN PRINT "ERROR IN D TO A #";FLAG% :STOP
5400 MD%=15:DIO%(0)=1 :DIO%(1)=SET2:FLAG%=X
5450 CALL DASH16 (MD%,DIO%(0),FLAG%)
5500 IF FLAG% <>0 THEN PRINT "ERROR IN D TO A #";FLAG% :STOP
5550 MD%=1 3:DIO%(0)=1 :FLAG%=X
5600 CALL DASH16 (MD%,DIO%(0),FLAG%)
5650 IF FLAG% <>0 THEN PRINT "ERROR IN DIGITAL OUT #";FLAG% :STOP
5750 IF N>(60/X) THEN GOSUB 13100
5780 IF N>(60/X) THEN LPRINT USING"# ######## ##.#### ##.########
##... ;COUNT,TIME5,CL,PSLOPE,SLOPE
5800 IF N>(60/X) THEN N=I
5830 IF N>(60/X) THEN LPRINT USING"##,,,-# ######## ##.#### .#########

.;COUNT,TIME5,CL,PSLOPE,SLOPE

5850 FOR I= LL% TO UL%
5900 DSUM(I)--0
5950 MIN(I)=10000
6000 MAX(I)=-10000
6050 BMIN(I)=I0000
6100 BMAX(I)=- 10000
6150 NEXT I
6200 IF (TIMER-TIME1)<(X-.25) THEN GOTO 6200
6250 GOSUB 6350
6300 GOTO 8200
6350 'START DMA
6400 DIO%(0)=CONVER
6450 DIO%(1)=&H2000
6500 DIO%(2)=1
6550 DIO%(3)=0
6600 MD%=6
6650 CALL DASH16 (MD%,DIO%(0),FLAG%)
6700 IF FLAG% <>0 THEN PRINT "ERROR IN DMAN #";FLAG% :STOP
6750 GOSUB 6850
6800 GOTO 7050
6850 MD%=12:DIO%(0)=l :DIO%(1)--0
6900 CALL DASH16 (MD%,DIO%(0),FLAG%)
6950 IF DIO%(1)<0 THEN CHANGE=-I-DIO%(1) ELSE CHANGE=65535!-DIO%(1)
7000 RETURN
7050 PRINT ....
7100 PRINT ....
7150 PRINT USING" ELAPSED TIME = ######.## SEC";TIMER
7200 TIME5=TIMER
7250 IF PCHANGE>CHANGE THEN M=M+65535!
7300 COUNT=M+CHANGE+CS
7350 'PRINT USING "#######.";PCOUNT(1)
7400 PCHANGE=CHANGE
7450 PRINT USING" NUMBER OF CYCLES =#######";COUNT
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7500 PRINT ..
7550 TIMlE2=TIMER
7600 DEL=(CONVER/RATE)+.05
7650 IF (TIMER-TIME2)<DEL THEN GOTO 7650
7700 'RETRIVE DATA
7750 DIO%(0)=CONVER
7800 DIO%(1)=&H2000
7850 DIO%(2)=0
7900 DIO%(3)=VARPTR(DT%(0))
7950 DIO%(4)=VARPTR(CH%(0))
8000 NM%=9
8050 CALL DASH 16 (MD%,DIO%(0),FLAG%)
8100 TIME 1=TIIMER
8150 RETURN
8200 'DISPLAY DATA
8250 FOR 1=0 TO (CONVER-1)
8300 DSUM(CH%(I))=DSUM(CH-%(I))+DT%(I)
8350 IF MAX(CH%(I))<DT%(I) THEN -MAX(CH%(I))=DT%(I)
8400 IF MIN(CH%(I))>DT%(I) THEN MIN(CH%(I))=DT%(I)
8450 NEXT I
8500 FOR I=LL% TO (LL%-I1)
8550 DAVG(I)=DSUM(I)/(CONVER/((UL%-LL%)i- ))
8600 VOLT(D)=(DAVG(I)/2048)* 10
8650 CVOLT(I)=VOLT(I)-NVOLTql)
8700 PRINT USING" VOLTAGE CHANNEL## = ###.#### VOLTS ";I,CVOLT(I)
8750 NEXT I
8800 FOR I = (LLT%+2) TO UL%
8850 VMAX(I)=(MAX(I)/2048)* 10
8900 VMIN(I)=(MIN(I)/2048)* 10
8950 NEXT 1
9000 NORM2=NORM2-((((MAX(5)-MIN(5))*4)-NORM1)/2)
9050 SET2=SET2-(((MIN(5)*4)-SET)/2)
9100 PRINT USING" MAX-MIN VOLTAGE FG #### ####
VOLTS ";VMAX(3),VMIN(3)
9150 MAXLOAD =VMAX(5)*5

9200 MINLOAD =VMIN(5)*5

9250 PRINT USING" MAX-MIN LOAD #### ####
KN";MAXLOAD,MINLOAD
9300 MAXSTRAIN =VMAX(4)
9350 MINSTRAIN =VMIN(4)
9400 PRINT USING" MAX-MIN COD ####
MM";MAXSTRAIN,,MINSTRAIN
9450 VR=CVOLT(LL%+ I)/CVOLT(LL%)
9500 TPVR=0O
9550 TPCOUNT=0O
9600 TCVR=0O
9650 TCCOUNT=0O
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9700 PVR(5)=VR
9750 PCOUNT (5)=COUNT
9800 FOR NN=1 TO 5
9850 TPVR =TPVR+PVR(NN-1)
9900 TCVR=TCVR+PVR(NN)
9950 TPCOUNT=TPCOUNT+PCOUNT(NN- 1)
10000 TCCOUNT=TCCOUNT+PCOUNT(NN)
10050 NEXT NN
10100 FOR NN=0O TO 4
10150 PVR (NN)=PVR(NN+1)
10200 PCOUNT (NN)= PCOUNT(NN+1)
10250 NEXT NN
10300 APVR=TPVR/5
10350 ACVR=TCVR/5
10400 APCOUNT=TPCOUNT/5
10450 ACCOUNT=TCCOUNT/5
10500 CL=C1 +(C2*(VR))+(C3*(VRA2))+(C4*(VRA3))+(C5*(VRA4))
10550 PCL-=Cl1+(C2*(APVR))+(C3*(AP VRA2))+(C4*(AP VRA3))+(C5 *(APVRA4))
10600 CCL=ClI+(C2*'(AC VR))+(C3 *(AC VRA2))+(C4* (AC VRA3))+(C5 *(ACVRA4))
1 0650'LPRINT USING"###.#####";VOLT(1 ),C VOLT(l1),NVOLT(l1),VOLT(2),
CVOLT(2),NVOLT(2),VR,CL
10700 'LPRINT USING "####.";COUNT,TIME5
10750 PRINT #1,USING "####.#";COUNT,TIME5
10800 PRINT# 1 ,USING"###.#####;CVOLT(l1),N VOLT(lI),CVOLT(2),N VOLT(2),
VR,CL
10810 PRINT # 1,U SING"###.####";VMAX(3),VMIN(3),VMAX(4),VMIN(4),
VMAX(5),VMIN(5)
10850 DELCL=CCL-PCL
10900 DELCOUNT=ACCOUNT-APCOUNT
10950 SLOPE=DELCL/DELCOUNT
11000 PRINT USING" CRACK LENGTH = ####"C
11050 PRINT USING" VOLTAGE RATIO = ####"V
11I100 'LPRINT DELCL,DELCOUNT
11150 PRINT" CURRENT dA/dN =";SLOPE

11200 PRINT' OVER STRESS dA/dN =";PSLOPE

11210 [F FLAG(1)=-0 AND CL>17 THEN FLAG(1)=1:FLBEEP=1
11220 [F FLAG(2)=0O AND CL>23 TIEN FLAG(2)=l:FLBEEP=l
11230 IF FLAG(3)=0O AND CL>28 THIEN FLAG(3)=1:FLBEEP= 1
11233 IF FLAG(4)=0O AND CL>40 THEN FLAG(4)=1:FL4O=1
11237 IF CL>45! THEN 13OSUB 19050
11240 IF FLBEEP=1 THEN BEEP: BEEP: PRINT"* ***CHECK dA/dN BE[-ORE
OVERSTRESS (Hlit F9 to stop message) * * * *":BEEP:BEEP
11245 IF FL-40=1 THEN B3EEP: BEEP:PRINT"** THIS TEST WILL AUTOMATICALLY
END AT 4 5mrn * * *
11250 'LPRINT SLOPE
1 1260 PRINT #I,SLOPE,PSLOPE
11300)
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11350 'THIS PORTION TRANSFERS RAPID READINGS
11400 'AND AVERAGES IN GROUPS OF 10
11450 '
11500 IF K>CONVER1 THEN GOTO 12750
11550 DIO%(0)=(INC*30)
11600 DIO%(1)=&H3000
11650 DIO%(2)=K
11700 DIO%(3)=VARPTR(DT%(0))
11750 DIO%(4)=VARPTR(CH%(0))
11800 MD%=9
11850 CALL DASH16 (MD%,DIO%(0),FLAG%)
11900 IF FLAG% <>0 THEN PRINT "ERROR DATA RETRIVAL #";FLAG% :STOP
11950 FOR Y = 0 TO (INC*29) STEP INC
12000 FOR B =Y TO (Y+(INC-1))
12050 BSUM(CH%(B))=BSUM(CH%(B))+DT%(B)
12100 NEXT B
12150 FOR L = LL% TO UL%
12200 BAVG(L)=BSUM(L)/10
12250 RVOLT(L)=(BAVG(L)/2048)* 10
12300 BVOLT(L)=RVOLT(L)-NNVOLT(L)
12350 BSUM(L)=0
12400 IF ML=I THEN PRINT #2, L, BVOLT(L),SCOUNT,XX
12450 IF ML=2 THEN PRINT #3, L, BVOLT(L),SCOUNT,XX
12500 IF ML=3 THEN PRINT #4, L, BVOLT(L),SCOUNT,XX
12550 NEXT L
12600 XX=XX+1
12650 NEXT Y
12700 K=K+(INC*30)
12750 N=N+1
12800 GOTO 5250
12850 '
12900
12950 'THIS PORTION TURNS OFF THE CURRENT
13000 'AND TAKES NULL READINGS
13050 '
13100 PRINT ....
13150 PRINT ..
13200 PRINT "******* CURRENT IS OFF WAIT DO NOT OVERSTRESS ****
13250 MD%= 13:DIO%(0)=3:FLAG%=X
13300 CALL DASH16 (MD%,DIO%(0),FLAG%)
13350 IF FLAG% <>0 THEN PRINT "ERROR IN DIG OUT #";FLAG% :STOP
13400 TIME3=TIMER
13450 FOR I = LL% TO UL%
13500 NSUM(I)=0
13550 NEXT I
13600 IF (TIMER-TIME3)<10 GOTO 136()
13650 GOSUB 6350
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13700 FOR I--0 TO (CONVER-1)
13750 NSUM(CH%(I))=NSUM(CH%(I))+DT%(I)
13800 NEXT I
13850 PRINT "..
13900 FOR I=LL% TO UL%
13950 NAVG(I)=NSUM(I)/(CONVER/((UL%-LL%)+ 1))
14000 NVOLT(I)=(NAVG(I)/2048)* 10
14050 NEXT I
14100 NVOLT(UL%)=0!
14150 NVOLT(UL%-1)--0!
14200 NVOLT(UL%-2)--0!
14250 FOR I= LL% TO (LL%+I)
14300 PRINT USING" NULL VOLTAGE CHANNEL## = ##.##### VOLTS";I,NVOLT(I)

14350 NEXT I
14400 PRINT ""
14450 PRINT "*** CURRENT BACK ON WAIT TILL AFTER NEXT READING ***"

14500 MD% =13:DIO%(0)=1 :FLAG%=X
14550 CALL DASH16 (MD%,DIO%(0),FLAG%)
14600 IF FLAG% <>0 THEN PRINT "ERROR IN DIG OUT #";FLAG% :STOP
14650 RETURN
14700 '
14750
14800 'TAKE RAPID READINGS WITH OVERSTRESS
14850 '
14900 PSLOPE=SLOPE
14950 GOSUB 6850
15000 COUNT=M+CHANGE+CS
15050 SCOUNT=COUNT
15100 GOSUB 6850
15150 TIME3=TIMER
15200 BCOUNT=CHANGE
15250 DIO%(0)=2
15300 DIO%(1)=500000!/RATE2
15350 MD%=17
15400 CALL DASH16 (MD%,DIO%(0),FLAG%)
15450 DIO%(0)=CONVERI
15500 DIO%(1)=&H3000
15550 DIO%(2)=I
15600 DIO%(3)--0
15650 MD%=6
15700 CALL DASH16 (MD%,DIO%(0),FLAG%)
15750 GOSUB 6850
15800 IF (CHANGE-BCOUNT)<6 GOTO 15750
15850 MD%= 15:DIO%(0)--0:DIO%( I)--OVER 1 :FLAG%=X
15900 CALL DASH16 (MD%,DIO%(0),FLAG%)
15950 CCOUNT=CHANGE
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16000 GOSUB 6850
16050 IF (CHANGE-CCOUNT)<NUM THEN GOTO 16000
16100 MD%=15:DIO%(0)=0:DIO%(1)=NORM1:FLAG%=X
16150 CALL DASH16 (MD%,DIO%(0),FLAG%)
16200 IF FLAG% <>0 THEN PRINT "ERROR IN A TO D #";FLAG% :STOP
16250 IF (TIMER-TIME3)<(SEC+.05) THEN GOTO 16250
16300 ML=ML+1
16350 K--0
16400 DIO%(0)=2
16450 DIO%(1)=500000!/RATE
16500 MD%=17
16550 CALL DASH16 (MD%,DIO%(0),FLAG%)
16600 IF FLAG% <>0 THEN PRINT "ERROR IN TIMER #";FLAG% :STOP
16650 TIME1=TIMER
16700 FOR I=LL% TO UL%
16750 NNVOLT(I)=NVOLT(I)
16800 NEXT I
16850 RETURN 5250
16900 '
16950
17000 'THIS PORTION SUSPENDS OPERATION
17050 '
17100 INPUT "DO YOU WANT TO STOP THE FUNCTION GEN.(Y,N)";GEN$
17110 LPRINT:LPRINT:LPRINT"FUNCTION KEY 6 HAS BEEN ACTIVATED.":BEEP
17120 LPRINT" HAS THE FUNCTION GENERATOR BEEN STOPPED? ",GEN$
17150 IF GEN$="N" THEN GOTO 17350
17200 MD%=13:DIO%(0)=0:FLAG%=X
17250 CALL DASH16 (MD%,DIO%(0),FLAG%)
17300 IF FLAG% <>0 THEN PRINT "ERROR IN DIGITAL OUT#";FLAG% :STOP
17350 INPUT "DO YOU WANT TO CHANGE THE SETPOINT,NORMAL LOAD OR
OVERLOAD (Y,N)?";V$
17400 IF V$="N" THEN GOTO 17800
17410 INPUT "NEW SET POINT LOAD AS % OF FULL RANGE:";SETPOINT
17415 LPRINT"NEW SET POINT LOAD AS % OF FULL RANGE: ";SETPOINT
17420 SET2=4095*(SETPOINT/50)
17430 SET=SET2
17450 INPUT"NEW NORMAL LOAD AS % OF FULL RANGE:";NORM
17455 LPRINT"NEW NORMAL LOAD AS % OF FULL RANGE: ";NORM
17500 NORM 1=4095*(NORM/50)
17550 NORM2=NORM I
17600 INPUT"NEW OVERLOAD AS % OF FULL RANGE:";OVER
17605 LPRINT"NEW OVERLOAD AS % OF FULL RANGE: ";OVER
17650 OVER 1=4095*(OVER/50)
17800 INPUT "PRESS ENTER TO RESUME";DUMB
17810 BEEP:LPRINT:LPRINT
17850 RETURN 5250
17900
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17950
18000 'THIS PORTION OVERSTRESSES WITHOUT RAPID READINGS
18050 '
18060 PSLOPE=SLOPE
18100 GOSUB 6850
18150 BCOUNT=CHANGE
18200 GOSUB 6850
18250 IF (CHANGE-BCOUNT)<2 GOTO 18200
18300 MD%=1 5 :DIO% (0)=0:DIO%( 1)--OVER I :FLAG%=X
18350 CALL DASH16 (MD%,DIO%(0),FLAG%)
18400 GOSUB 6850
18450 CCOUNT=CHANGE
18500 GOSUB 6850
18550 IF (CHANGE-CCOUNT)<NUM THEN GOTO 18500
18600 MD%=15:DIO%(O)=0:DIO%(1)=NORM1:FLAG%=X
18650 CALL DASH16 (MD%,DIO%(0),FLAG%)
18700 K=CONVER1+100
18750 TIME 1=TIMER
18800 RETURN 5750
18850 '
18900
18950 ' THIS PORTION ENDS THE TEST
19000'
19050 MD%=13:DIO%(0)=0:FLAG%=X
19100 CALL DASH16 (MD%,DIO%(0),FLAG%)
19150 IF FLAG% <>0 THEN PRINT "ERROR IN DIGITAL OUT #";FLAG% :STOP
19200 FOR 1=1 TO 100
19250 SET3=SET/I
19300 MD%= 15:DIO%(0)= 1 :DIO%(1)=SET3:FLAG%=X
19350 CALL DASH16 (MD%,DIO%(0),FLAG%)
19400 IF FLAG% <>0 THEN PRINT "ERROR IN D TO A #";FLAG% :STOP
19450 NEXT I
19500 MD%= 15:DIO%(0)= I :L)iO%(I)=0:FLAG%=X
19550 CALL DASH16 (MD%,DIO%(0),FLAG%)
19600 PRINT ....
19650 PRINT ....
19700 PRINT ***********************************************
19750 PRINT " YOUR NORMAL RATE DATA FILE IS NAMED ";F$
19800 PRINT " YOUR FIRST RAPID RATE DATA FILE IS NAMED ";G$
19850 PRINT " YOUR SECOND RAPID RATE DATA FILE IS NAMED ";H$
19900 PRINT " YOUR THIRD RAPID RATE DATA FILE IS NAMED ";E$
19950 PRINT " WRITE THEIR NAMES DOWN !!!!!!
20000 PRINT"*************************************************"
20050 CLOSE
20060 LPRINT USING"####### ######## ##.#### ##.######## ##.########## TEST
ENDED";COUNT,TIME5,CLPSLOPE,SLOPE
20070 LPRINT:LPRINT:LPRINT:LPRINT
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20100 END
21000 FLBEEP=0:RETURN
21010 END
22000 PRINT"ERROR: ";ERR;"' OCCURED't:LPRINT"ERROR: ";ERR;"' OCCURED":GOTO
19050
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Program for calibration

50 'THIS PROGRAM IS STORED AS NEWCAL.BAS
100 'used for calibration
150 '
200
250
300 CLEAR
350 DEF SEG=0
400 SG=256*PEEK(&H511)+PEEK(&H510)
450 SG=SG+49152!/16
500 DEF SEG=SG
550 BLOAD "DASH16.BIN",0
600'
650 'INITIALIZE PROGRAM
700
750 DIM DIO%(4),DT%(2500!),CH%(2500!),DAVG(10),DSUM(10),VOLT(10),

BSUM(100)
800 DIO%(0)=832
850 DIO%(1)=2
900 DIO%(2)=1
950 MD%--0
1000 FLAG%=0
1050 DASH16--0
1100 CALL DASH16 (MD%,DIO%(0),FLAG%)
1150 IF FLAG% <>) THEN PRINT "INITIALIZATION ERROR #";FLAG%:STOP
1200 ML--0
1250 N=7
1300 KEY (6) ON
1350 KEY (5) ON
1400 KEY (10) ON
1450 ON KEY (6) GOSUB 9200
1500 ON KEY (5) GOSUB 9900
1550 ON KEY (10) GOSUB 4700
1600 INPUT"NAME FOR DATA FILE";F$
1650 OPEN F$ FOR OUTPUT AS #1
1700 INPUT"NORMAL LOAD AS % OF FULL RANGE";NORM
1750 NORM 1 =(4095*(NORM/100))*2
1800 INPUT"LOWER CHANNEL LIMIT";LL%
1850 !NPUT"UPPER CHANNEL LIMIT";UL%
1900 INPUT"READING RATE";RATE
1950 INPUT"NUMBER OF READINGS PER SAMPLE";CONVER
2000 XX--0
205Q X=10
2100
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2150 'INITIALIZE COUNTER
2200 '
2250 MD%=1 1:DIO%(0)=-1
2300 CALL DASH16 (MD%,DIO%(0),FLAG%)
2350 IF FLAG% <>0 THEN PRINT "COUNTER ERROR #";FLAG% :STOP
2400
2450
2500 'SET SAMPLE RATE
2550 '
2600 'SAMPLE RATE= 1,000,000/DIO%(0)*DIO%(1)
2650 DIO%(0)=2
2700 DIO%(1)=500000!/RATE
2750 MD%=17
2800 CALL DASH16 (MD%,DIO%(0),FLAG%)
2850 IF FLAG% <>0 THEN PRINT "ERROR IN TIMER #";FLAG% :STOP
2900'
2950
3000 'SET SCAN LIMITS
3050 '
3100
3150
3200 DIO%(0)=LL%
3250 DIO%(1)=UL%
3300 MD%=I
3350 CALL DASH16 (MD%,DIO%(0),FLAG%)
3400 IF FLAG% <>0 THEN PRINT "ERROR IN SCAN LIMITS #";FLAG%:STOP
3450
3500
3550 ' START AND RUN TEST
3600'
3650 MD%=15:DIO%(O)=0:DIO%(1)=NORMI :FLAG%=X
3700 CALL DASH16 (MD%,DIO%(0),FLAG%)
3750 IF FLAG% <>0 THEN PRINT "ERROR IN D TO A #";FLAG% :STOP
3800 MD%=13:DIO%(0)=1 :FLAG%=X
3850 CALL DASH16 (MD%,DIO%(0),FLAG%)
3900 IF FLAG% <>0 THEN PRINT "ERROR IN DIG OUT #";FLAG% :STOP
3950 TIME$="00:00:00"
4000 FOR I= LL% TO UL%
4050 DSUM(I)--0
4100 NEXT I
4150 TIME 1=TIMER
4200 IF N>(60/X) THEN GOSUB 7600
4250 IF N>(60/X) THEN N=2
4300 IF N=3 THEN PRINT " OK F10 TO TAKE READING ****"
4350 IF N=3 THEN PRINT" F6 TO SUSPEND F5 TO END"
4550 IF (TIMER-TIME1)<(X-.25) THEN GOTO 4550
4600 N=N+I
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4650 GOTO 4150
4700 GOSUB 4800
4750 GOTO 6600
4800 'START DMA
4850 DIO%(0)=CONVER
4900 DIO%(1)=&H2000
4950 DIO%(2)=1
5000 DIO%(3)=0
5050 MD%=6
5100 CALL DASH16 (MD%,DIO%(0),FLAG%)
5150 IF FLAG% <>0 THEN PRINT "ERROR IN DMAN #";FLAG% :STOP
5200 GOSUB 5300
5250 GOTO 5550
5300 MD%=12:DIO%(0)=1 :DIO%(1)=0
5350 CALL DASH16 (MD%,DIO%(0),FLAG%)
5400 IF FLAG% <>0 THEN PRINT "ERROR IN READING COUNTER #";FLAG%

:.s IOP
5450 IF DIO%(1)<0 THEN CHANGE=;I-DIO%(1) ELSE

CHANGE=65535!-DIO%(1)
5500 RETURN
5550 PRINT ....
5600 PRINT ....
5650 PRINT USING" ELAPSED TIME = ########.## SEC";TIMER
5700 IF Y>CHANGE THEN M=M+65535!
5750 COUNT=M+CHANGE+CS
5800 Y=CHANGE
5850 PRINT USING" NUMBER OF CYCLES =######";COUNT
5900 PRINT ....
5950 TIME2=TIMER
6000 DEL=(CONVERI(1000000!/RATE))+.05
6050 IF (TIMER-TIME2)<DEL THEN GOTO 6050
6100 'RETRIVE DATA
6150 DIO%(0)=CONVER
6200 DIO%(1)=&H2000
6250 DIO%(2)--0
6300 DIO%(3)=VARPTR(DT%(0))
6350 DIO%(4)=VARPTR(CH%(0))
6400 MD%=9
6450 CALL DASH16 (MD%,DIO%(0),FLAG%)
6500 TIME I=TIMER
6550 RETURN
6600 'DISPLAY DATA
6650 FOR I=0 TO (CONVER-1)
6700 DSUM(CH%(I))=DSUM(CH%(I))+DT%(I)
6750 NEXT I
6800 INPUT"CRACK LENGTH";CL
6850 CL=CL+15.2
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6855 LPRINT
6860 LPRINT USING" CL ###.####";CL
6900 FOR I=LL% TO UL%
6950 DAVG(D=DSUM(I)/(CONVER/((UL%-LL%)+1))
7000 VOLT(D=(DAVG(I)/2048)* 10
7050 CVOLT(I)=VOLT(I)-NVOLT(I)
7100 PRINT USING" VOLTAGE CHANNEL## = ###.##### VOLTS";I,

CVOLT(I)
7150 PRINT #1, CVOLT(I),
7200 NEXT I
7225 VR=CVOLT(2)/CVOLT(1)
7230 PRINT USING" VR ###.####";VR
7235 INVR=1/VR
7240 PRINT USING" INVR ###.####";INVR
7245 LPRINT USING" VR ###.####";VR
7246 LPRINT USING" INVR ###.####";INVR
7250 PRINT #1,COUNT,CL,VR
7300 RETURN 4000
7350 '
7400
7450 'THIS PORTION TURNS OFF THE CURRENT
7500 'AND TAKES NULL READINGS
7550 '
7600 PRINT ....
7650 PRINT ....
7700 PRINT "******* CURRENT IS OFF WAIT ******"
7750 MD%=1 3:DIO%(0)=3:FLAG%=X
7800 CALL DASH16 (MD%,DIO%(0),FLAG%)
7850 IF FLAG% <>0 THEN PRINT "ERROR IN DIG OUT #";FLAG% :STOP
7900 TIME3=TIMER
7950 FOR I = LL% TO UL%
8000 NSUM(I)=0
8050 NEXT I
8100 IF (TIMER-TIME3)<10 GOTO 8100
8150 GOSUB 4800
8200 FOR 1=0 TO (CONVER-1)
8250 NSUM(CH%(I))=NSUM(CH%(I))+DT%(I)
8300 NEXT I
8350 PRINT
8400 FOR I=LL% TO UL%
8450 NAVG(I)=NSUM(I)/(CONVER/((UL%-LL%)+ 1))
8500 NVOLT(I)=(NAVG(I)/+2048)* 10
8550 NVOLT(UL%)=0!
8600 NVOLT(UL%- 1)=0!
8650 PRINT USING" NULL VOLTAGE CHANNEL## = ##.##### VOLTS";I,

NVOLT(I)
8700 NEXT I

179

|7. 1



8750 PRINT ..
8760 MD%=13:DIO%(0)=l :FLAG%=X
8770 CALL DASH16 (MD%,DIO%(0),FLAG%)
8780 IF FLAG% <>0 THEN PRINT "ERROR IN DIG OUT #";FLAG% :STOP
8800 PRINT "*** CURRENT BACK ON WAIT 10 SEC FOR NEXT READING ***"
8850 PRINT
8900 PRINT
8950 RETURN 4250
9000'
9050'
9100 'THIS PORTION SUSPENDS OPERATION
9150'
9200 MD%=13:DIO%(0)--0:FLAG%=X
9250 CALL DASH16 (MD%,DIO%(0),FLAG%)
9300 IF FLAG% <>0 THEN PRINT "ERROR IN DIG OUT #";FLAG% :STOP
9301 INPUT"DO YOU WANT TO CHANGE THE DELTA LOAD (Y,N)";V$
9302 IF V$="N" THEN GOTO 9350
9303 INPUT "NEW DELTA LOAD";NORM
9304 NORM 1--4095*(NORM/50)
9305 MD%= 15 :DIO%(0)--0:DIO%(1)=NORM1:FLAG%=X
9306 CALL DASH16 (MD%,DIO%(0),FLAG%)
9307 IF FLAG% <>0 THEN PRINT "ERROR IN D TO A #";FLAG% :STOP
9350 INPUT "PRESS ENTER TO RESUME";DUMB
9400 MD%=13:DIO%(0)=1:FLAG%=X
9450 CALL DASH16 (MD%,DIO%(0),FLAG%)
9500 IF FLAG% <>0 THEN PRINT "ERROR IN DIG OUT #";FLAG% :STOP
9550 RETURN 4000
9600
9650
9700
9750
9800 'THIS PORTION ENDS THE TEST
9850
9900 MD%=1 3:DIO%(0)=0:FLAG%=X
9950 CALL DASH16 (MD%,DIO%(0),FLAG%)
10000 IF FLAG% <>0 THEN PRINT "ERROR IN DIG OUT #";FLAG% :STOP
10050 PRINT ....
10100 PRINT
10150 PRINT ********************************************
10200 PRINT " YOUR DATA FILE IS NAMED ";F$
10250 PRINT " WRITE THE NAME DOWN!!!!!"
10300 PRINT *********************************************
10350 CLOSE
10400 END
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